1.

Record Nr.

UNINA9910564681703321

Autore

Crichigno Jorge

Titolo

High-speed networks : a tutorial / / Jorge Crichigno [and three others]

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

3-030-88841-X

Descrizione fisica

1 online resource (471 pages)

Collana

Practical Networking

Disciplina

004.6

Soggetti

Computer networks

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Audience -- What is Unique About This Book? -- The Virtual Platform and Virtual Laboratory Experiments -- Organization -- Relevance of Networking Tools -- Acknowledgement -- Contents -- Abbreviations -- Introduction to High-Speed Networks and Science DMZ -- 1 Objective and Access to Accompanied Training Material -- 2 Motivation for Science DMZs -- 3 Science DMZs Applications -- Chapter 1-Lab 1: Introduction to Mininet -- 4 Introduction to Mininet -- 5 Invoking Mininet Using the CLI -- 5.1 Invoking Mininet Using the Default Topology -- 5.2 Testing Connectivity -- 6 Building and Emulating a Network in Mininet Using the GUI -- 6.1 Building the Network Topology -- 6.2 Testing Connectivity -- 6.3 Automatic Assignment of IP Addresses -- 6.4 Saving and Loading a Mininet Topology -- Chapter 1-Lab 2: Introduction to iPerf3 -- Lab Roadmap -- 7 Introduction to iPerf3 -- 8 Lab Topology -- 8.1 Starting Host h1 and Host h2 -- 9 Using iPerf3 (Client and Server Commands) -- 9.1 Starting Client and Server -- 9.2 Setting Transmitting Time Period -- 9.3 Setting Time Interval -- 9.4 Changing the Number of Bytes to Transmit -- 9.5 Specifying the Transport-Layer Protocol -- 9.6 Changing Port Number -- 9.7 Export Results to JSON File -- 9.8 Handle One Client -- 10 Plotting iPerf3 Results -- References -- Network Cyberinfrastructure Aspects for Big Data Transfers -- 1 Limitations of Enterprise Networks and Motivation for Science DMZs -- 2 Science DMZ Architecture -- 2.1 Addressing the Enterprise Network Limitations -- 3 WAN Cyberinfrastructure -- 3.1



Connecting a Science DMZ via an Internet2 POP -- 3.2 Connecting a Science DMZ via a Regional REN -- 3.3 Connecting a Science DMZ via a Commercial ISP -- 3.4 Connecting a Science DMZ via a Commercial ISP Circuit -- 4 Current State: Science DMZ Deployment in the U.S.

Chapter 2-Lab 3: Emulating WAN with NETEM Part I-Latency and Jitter -- 5 Introduction to Network Emulators and NETEM -- 5.1 NETEM -- 5.2 WANs and Delay -- 6 Lab Topology -- 6.1 Starting Host h1 and Host h2 -- 7 Adding/Changing Delay to Emulate a WAN -- 7.1  Identify Interface of Host h1 and Host h2 -- 7.2 Add Delay to Interface Connecting to WAN -- 7.3 Changing the Delay in Emulated WAN -- 8 Restoring Original Values (Deleting the Rules) -- 9 Adding Jitter to Emulated WAN -- 9.1 Add Jitter to Interface Connecting to WAN -- 10 Adding Correlation Value for Jitter and Delay -- 11 Delay Distribution -- Chapter 2-Lab 4: Emulating WAN with NETEM II: Packet Loss, Duplication, Reordering, and Corruption -- 12 Introduction to Network Emulators and NETEM -- 13 Lab Topology -- 13.1  Testing Connectivity Between Two Hosts -- 14 Adding/Changing Packet Loss -- 14.1 Identify Interface of Host h1 and Host h2 -- 14.2 Add Packet Loss to the Interface Connecting to the WAN -- 14.3 Restore Default Values -- 14.4 Add Correlation Value for Packet Loss to Interface Connecting to WAN -- 15 Adding Packet Corruption -- 15.1 Add Packet Corruption to an Interface Connected to the WAN -- 16 Add Packet Reordering -- 17 Add Packet Duplication -- Chapter 2-Lab 5: Setting WAN Bandwidth with Token Bucket Filter (TBF) -- 18 Introduction to Token Bucket Algorithm -- 19 Lab Topology -- 19.1 Starting Host h1 and Host h2 -- 20 Rate Limiting on End-Hosts -- 20.1 Identify Interface of Host h1 and Host h2 -- 20.2 Emulating 10Gbps High-Latency WAN -- 21 Rate Limiting on Switches -- 22 Combining NETEM and TBF -- References -- Data-Link and Network Layer Considerations for LargeData Transfers -- 1 Data-Link and Network-Layer Devices -- 2 Switching Review -- 3 Switching Considerations for Science DMZs -- 3.1 Traffic Profile -- 3.2 Maximum Transmission Unit.

3.3 Buffer Size of Output or Transmission Ports -- 3.4 Bufferbloat -- 3.5 Routers and Switches in a Hierarchical Network -- 4 Switches in Enterprise Networks and Science DMZs -- Chapter 3-Lab 6: Router's Buffer Size -- 5 Introduction -- 5.1 Introduction to Switching -- 5.2 Router Architecture -- 5.3 Where does Packet Loss Occur? -- 5.4 Buffer Size -- 6 Lab Topology -- 6.1 Starting Host h1, Host h2, Host h3, and Host h4 -- 6.2 Modifying Hosts' Buffer Size -- 6.3 Emulating High-Latency WAN -- 6.4 Testing Connection -- 7 Testing Throughput with 100 · MTU Switch's Buffer Size -- 7.1 Setting Switch S1's Buffer Size to 100 · MTU -- 7.2 TCP Cubic -- 7.3 TCP Reno -- 7.4 TCP BBR -- 8 Testing Throughput with One BDP Switch's Buffer Size -- 8.1 Changing Switch S1's Buffer Size to One BDP -- 8.2 TCP Cubic -- 8.3 TCP Reno -- 8.4 TCP BBR -- 9 Emulating High-Latency WAN with Packet Loss -- 9.1 TCP Cubic -- 9.2 TCP Reno -- 9.3 TCP BBR -- Chapter 3-Lab 7: Router's Bufferbloat -- 10 Introduction to Bufferbloat -- 10.1 1.1 Packet Delays -- 10.2 Bufferbloat -- 11 Lab Topology -- 11.1 Starting Host h1, Host h2, and Host h3 -- 11.2 Emulating High-Latency WAN -- 11.3 Testing Connection -- 11.4 Testing Throughput on a Network with a Small Buffer-Size Switch -- 11.5 Setting Switch S1's Buffer Size to 100 · MTU -- 11.6 Bandwidth-Delay Product (BDP) and Hosts' Buffer Size -- 11.7 Throughput Test -- 12 Testing Throughput on a Network with a 1 · BDP Buffer-Size Switch -- 12.1 Setting Switch S1's Buffer Size to 1 · BDP -- 12.2 Throughput and Latency Tests -- 13 Testing Throughput on a Network with a Large Buffer-Size Switch -- 13.1 Setting Switch S1's Buffer Size to 10 · BDP -- 13.2 Throughput and Latency Tests -- Chapter 3-Lab 8: Random Early Detection (RED) -- 14



Introduction -- 14.1 Random Early Detection Mechanism -- 15 Lab Topology.

15.1 Starting Host h1, Host h2, and Host h3 -- 15.2 Emulating High-Latency WAN -- 15.3 Testing Connection -- 16 Testing Throughput on a Network Using Drop Tail AQM Algorithm -- 16.1 Bandwidth-Delay Product (BDP) and Hosts' TCP Buffer Size -- 16.2 Setting Switch S2's Buffer Size to 10 · BDP -- 16.3 Throughput and Latency Tests -- 17 Configuring RED on Switch S2 -- 17.1 Setting RED Parameter on Switch S2's Egress Interface -- 17.2 Throughput and Latency Tests -- 17.3 Changing the Bandwidth to 100Mbps -- 17.4 Throughput and Latency Tests -- References -- Impact of TCP on High-Speed Networks and Advances in Congestion Control Algorithms -- 1 TCP Review -- 2 TCP Considerations for Science DMZs -- 2.1 Maximum Segment Size -- 2.2 Flow Control and TCP Receive Buffer -- 2.3 Selective Acknowledgment -- 2.4 Parallel TCP Connections -- 2.5 TCP Fair Queue Pacing -- 2.6 TCP Congestion Control Algorithms -- 3 Transport-Layer Issues in Enterprise Networks and Science DMZs -- 4 Academic Cloud and Virtual Laboratories -- 5 Chapter 4-Lab 9: Understanding Traditional TCP Congestion Control (HTCP, Cubic, Reno) -- 6 Introduction to TCP -- 6.1 TCP Review -- 6.2 TCP Throughput -- 6.3 TCP Packet Loss Event -- 6.4 Impact of Packet Loss in High-Latency Networks -- 7 Lab Topology -- 7.1 Starting Host h1 and Host h2 -- 7.2 Emulating 10Gbps High-Latency WAN with Packet Loss -- 7.3 Testing Connection -- 8 Introduction to sysctl -- 8.1 Read sysctl Parameters -- 8.2 Write sysctl Parameters -- 8.3 Configuring sysctl.conf File -- 9 Congestion Control Algorithms and sysctl -- 9.1 Inspect and Install/Load Congestion Control Algorithms -- 9.2 Inspect the Default (Current) Congestion Control Algorithm -- 9.3 Modify the Default (Current) Congestion Control Algorithm -- 10 iPerf3 Throughput Test -- 10.1 Throughput Test Without Delay -- 10.2 TCP Reno -- 10.3 Hamilton TCP (HTCP).

10.4 TCP Cubic -- 10.5 Throughput Test with 30ms Delay -- 10.6 TCP Reno -- 10.7 Hamilton TCP (HTCP) -- 10.8 TCP Cubic -- 11 Chapter 4-Lab 10: Understanding Rate-Based TCP Congestion Control (BBR) -- 12 Introduction to TCP -- 12.1 Traditional TCP Congestion Control Review -- 12.2 Traditional Congestion Control Limitations -- 12.3 TCP BBR -- 13 Lab Topology -- 13.1 Starting Host h1 and Host h2 -- 13.2 Emulating 1Gbps High-Latency WAN with Packet Loss -- 13.3 Testing Connection -- 14 iPerf3 Throughput Test -- 14.1 Throughput Test Without Delay -- 14.1.1 TCP Reno -- 14.1.2 TCP BBR -- 14.2 Throughput Test with 30ms Delay -- 14.2.1 TCP Reno -- 14.2.2 TCP BBR -- 15 Chapter 4-Lab 11: Bandwidth-Delay Product and TCP Buffer Size -- 16 Introduction to TCP buffers, BDP, and TCP Window -- 16.1 TCP Buffers -- 16.2 Bandwidth-Delay Product -- 16.3 Practical Observations on Setting TCP Buffer Size -- 16.4 TCP Window Size Calculated Value -- 16.5 Zero Window -- 17 Lab Topology -- 17.1 Starting Host h1 and Host h2 -- 17.2 Emulating 10Gbps High-Latency WAN -- 18 BDP and Buffer Size -- 18.1 Window Size in sysctl -- 19 Modifying Buffer Size and Throughput Test -- 20 Chapter 4-Lab 12: Enhancing TCP Throughput with Parallel Streams -- 21 Introduction to TCP Parallel Streams -- 21.1 Parallel Stream Fundamentals -- 21.2 Advantages of Parallel Streams -- 22 Lab Topology -- 22.1 Starting Host h1 and Host h2 -- 22.2 Emulating 10Gbps High-Latency WAN -- 22.3 Testing Connection -- 23 Parallel Streams to Overcome TCP Buffer Limitation -- 24 Parallel Streams to Combat Packet Loss -- 24.1 Limit Rate and Add Packet Loss on Switch S1's s1-eth2 Interface -- 24.2 Test with Parallel Streams -- 25 Chapter 4-Lab 13: Measuring TCP Fairness -- 26 Fairness Concepts -- 26.1 TCP Bandwidth Allocation -- 26.2 TCP Fairness Index Calculation -- 27 Lab Topology -- 27.1 Starting Host h1



and Host h2.

27.2 Emulating 10Gbps High-Latency WAN.