1.

Record Nr.

UNINA9910558490303321

Titolo

Annual update in intensive care and emergency medicine 2022 / / edited by Jean-Louis Vincent

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

9783030934330

9783030934323

Descrizione fisica

1 online resource (398 pages)

Collana

Annual Update in Intensive Care and Emergency Medicine

Disciplina

616.028

Soggetti

Critical care medicine

Medicina intensiva

Medicina d'urgència

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Contents -- Abbreviations -- Part I: Sepsis and the Immune Response -- 1: The Role of Mitochondria in the Immune Response in Critical Illness -- 1.1  Introduction -- 1.2  Mitochondrial Machinery That Mediates and Regulates Immune Responses in Critical Illness -- 1.2.1  Metabolic Reprogramming -- 1.2.2  Mitochondrial ROS and mtDNA -- 1.2.3  Succinate and Itaconate -- 1.2.4  Mitochondrial Dynamics -- 1.3  Immunometabolism: The Perfect World Scenario vs. the Critical Illness Scenario -- 1.4  Potential of Mitochondria-Targeting Therapy in Critical Care -- 1.5  Challenges of Applying Mitochondria-Targeting Therapy in Critical Care -- 1.6  Conclusion -- References -- 2: Immunomodulation by Tetracyclines in the Critically Ill: An Emerging Treatment Option? -- 2.1  Introduction -- 2.2  Immunopathogenesis of Sepsis -- 2.3  Immunopathogenesis of ARDS -- 2.4  Mechanisms of Action of Tetracyclines in ARDS -- 2.4.1  In Vivo Models -- 2.4.1.1  Effects on Inflammatory Cytokines and NLRP3 Inflammasome Caspase-1 Signaling -- 2.4.1.2  Effects on MMPs -- 2.4.1.3  Effects on Neutrophil Transmigration -- 2.4.2  Human Data -- 2.5  Mechanisms of Action of Tetracyclines in Sepsis -- 2.5.1  In Vitro



Models -- 2.5.1.1  Effects on Cytokine and Chemokine Production -- 2.5.1.2  Effects on Arachidonic Acid Metabolites and NO Production -- 2.5.2  In Vivo Models -- 2.5.2.1  Effects on MAPK Signaling Pathways and Inflammatory Mediators -- 2.5.2.2  Effects on Organ Dysfunction -- 2.5.3  Human Data -- 2.6  Future Research Perspectives -- 2.7  Conclusion -- References -- 3: Hit Early: Blocking Interleukin-1 in the Treatment of COVID-19 Pneumonia -- 3.1  Introduction -- 3.2  Cytokines and Disease Progression in COVID-19 -- 3.3  Contribution of Monocytes and Macrophages in Early Cytokine Response -- 3.4  How Can Early Activation of IL-1 Be Identified?.

3.5  SAVE Strategy: Early Blockade of IL-1 Guided by Biomarkers -- 3.6  Conclusion -- References -- 4: Hemoadsorption Therapy During ECMO: Emerging Evidence -- 4.1  Introduction -- 4.2  Devices and Implementation -- 4.3  Hemoadsorption in Combination with ECMO -- 4.4  Hemoadsorption in Severe COVID-19 Supported with ECMO -- 4.5  Discussion and Outlook -- 4.6  Conclusion -- References -- Part II: Respiratory Issues -- 5: The Forgotten Circulation and Transpulmonary Pressure Gradients -- 5.1  Introduction -- 5.2  Pulmonary Vessel Anatomy -- 5.3  Pulmonary Vascular Dysfunction -- 5.4  Pulmonary Circulation and Its Components -- 5.4.1  The Transpulmonary Driving Pressure: A Small Gradient with Big Importance -- 5.4.2  Pulmonary Vascular Resistance and 'Closing Pressures' -- 5.5  Measuring the Transpulmonary Pressure Gradient -- 5.6  The Evolving Role of Pulmonary Arterial Compliance -- 5.7  Relevant Clinical Scenarios in Critical Illness -- 5.7.1  Pulmonary Hypertension -- 5.7.2  Right Ventricular Dysfunction -- 5.8  Can Right Ventricular-Pulmonary Arterial (RV-PA) Coupling Shed more Light on the RV-Pulmonary Circuit in Critical Illness? -- 5.9  Conclusion -- References -- 6: Oxygen: Origin, Physiology, Pathophysiology, and Use in the Critically Ill -- 6.1  Introduction -- 6.2  Origin of Oxygen in the Earth's Atmosphere -- 6.3  Measurements and Estimations of Oxygenation -- 6.4  Definition of Hypoxemia, Normoxemia, and Hyperoxemia -- 6.5  Physiology of Oxygen in Humans -- 6.6  Pathophysiology of Oxygen in Humans: Hypoxemia and Effects of Lack of O2 -- 6.7  Pathophysiology of Oxygen in Humans: Hyperoxia, Hyperoxemia, and O2 Toxicity -- 6.8  Effects of Normoxia, Hypoxia and Hyperoxia in Critically Ill Patients -- 6.9  Future Studies -- 6.10  Conclusion -- References -- 7: Nebulized Therapeutics for COVID-19 Pneumonia in Critical Care -- 7.1  Introduction.

7.2  Nebulized Therapeutics for COVID-19 Pneumonia -- 7.3  Technical Aspects of Nebulized Drug Therapy -- 7.4  Current Clinical Trials on Nebulized COVID-19 Therapeutics in Critical Care -- 7.4.1  Antivirals -- 7.4.1.1  Chloroquine/Hydroxychloroquine -- 7.4.1.2  Remdesivir -- 7.4.1.3  Ivermectin -- 7.4.2  Immunomodulators -- 7.4.2.1  Granulocyte-Monocyte Colony-Stimulating Factor (GM-CSF) -- 7.4.3  Anticoagulants -- 7.4.3.1  Heparin -- 7.4.4  Fibrinolytics -- 7.4.4.1  Tissue Plasminogen Activator (t-PA) -- 7.4.5  Anti-Inflammatory Agents -- 7.4.5.1  Interferon -- 7.4.5.2  Steroids -- 7.4.5.3  Retinoic Acid -- 7.4.6  Mucokinetics/Mucolytics -- 7.4.6.1  Dornase Alfa -- 7.4.7  Pulmonary Vasodilators -- 7.4.7.1  Epoprostenol, Iloprost -- 7.4.8  Miscellaneous -- 7.4.8.1  Surfactant -- 7.5  Barriers to Safe and Effective Nebulized Therapy in COVID-19 Pneumonia in Critical Care -- 7.6  Conclusion -- References -- Part III: Mechanical Ventilation -- 8: Positive End-Expiratory Pressure in Invasive and Non-invasive Ventilation of COVID-19 Acute Respiratory Distress Syndrome -- 8.1  Introduction -- 8.2  Evidence for a Unique CARDS Pathophysiology -- 8.3  A Computational Simulator to Compare CARDS Versus ARDS Pathophysiology -- 8.4  Setting PEEP in Invasive



Mechanical Ventilation of CARDS Patients -- 8.5  Setting PEEP in Non-invasive Pressure Support Ventilation of CARDS Patients -- 8.6  Conclusion -- References -- 9: Personalized Mechanical Ventilation Settings: Slower Is Better! -- 9.1  Introduction -- 9.2  Strain, Stress, and Strain Rate: Insights from Polymeric Material -- 9.3  Origins of the Mechanical Power Formula: The Components Must Respect Time -- 9.4  Slow the Changes in Tidal Volume during Mechanical Ventilation -- 9.5  Slow the Changes in Respiratory Rate during Mechanical Ventilation -- 9.5.1  Prolonged Versus Short Inspiratory Time?.

9.5.2  High Versus Low Inspiratory Flow? -- 9.6  Stepwise Increase in Airway Pressure during Recruitment Maneuvers -- 9.7  Slow Decreases in PEEP Levels and Lung Damage -- 9.8  Smooth the Expiration Phase: Does It Matter? -- 9.9  Conclusion -- References -- 10: Spontaneous Breathing in Acute Respiratory Failure -- 10.1  Introduction -- 10.2  Acute Respiratory Distress Syndrome -- 10.3  Mechanical Ventilation and VILI -- 10.4  Stress, Strain, and Stress Raisers -- 10.5  P-SILI and Assisted Ventilation -- 10.6  Lung Mechanics and Pulmonary Heterogeneity -- 10.7  Conclusion -- References -- 11: Laryngeal Injury: Impact on Patients in the Acute and Chronic Phases -- 11.1  Introduction -- 11.2  Laryngeal Injury -- 11.2.1  Endotracheal Intubation -- 11.2.2  Identification and Management of Laryngeal Injury in the Acute Phase -- 11.3  Impact of Laryngeal Injury on the Patient in the Acute Phase -- 11.3.1  Swallowing and Return to Oral Intake -- 11.3.2  Communication in the ICU -- 11.4  Impact of Laryngeal Injury on the Patient in the Chronic Phase -- 11.5  Laryngeal Injury in the ICU and beyond -- 11.5.1  Clinical Assessment: Future Directions -- 11.5.2  Laryngeal Rehabilitation -- 11.5.3  Community Follow Up of Critical Illness Survivors -- 11.6  Conclusion -- References -- Part IV: Fluids and Electrolytes -- 12: Fluid Responsiveness as a Physiologic Endpoint to Improve Successful Weaning -- 12.1  Introduction -- 12.2  Weaning from Mechanical Ventilation -- 12.3  Weaning Failure -- 12.4  Weaning-Induced Pulmonary Edema -- 12.5  De-Resuscitation -- 12.6  Physiology-Based Fluid Depletion -- 12.7  Monitoring Fluid Responsiveness Prior to SBT -- 12.8  Conclusion -- References -- 13: Tidal Volume Challenge Test: Expanding Possibilities -- 13.1  Introduction -- 13.2  Rationale for Developing the Tidal Volume Challenge Test.

13.3  Reliability of the Tidal Volume Challenge Test to Predict Fluid Responsiveness -- 13.4  How to Perform and Interpret the Tidal Volume Challenge Test -- 13.5  Applications of the Tidal Volume Challenge Test -- 13.5.1  In ICU Patients Mechanically Ventilated Using Low Tidal Volumes -- 13.5.2  In Mechanically Ventilated Patients with Spontaneous Breathing Activity -- 13.5.3  In Patients with Normal Lungs Ventilated Using Low Tidal Volumes in the Operating Room -- 13.5.3.1  In the Supine Position -- 13.5.3.2  In the Prone Position -- 13.5.4  During Laparoscopic Surgery Using Pneumoperitoneum in the Trendelenburg Position -- 13.6  Comparison of Tidal Volume Challenge with Other Tests Used to Predict Fluid Responsiveness -- 13.7  Advantages of the Tidal Volume Challenge -- 13.8  Limitations of the Tidal Volume Challenge -- 13.9  Future Directions -- 13.10  Conclusion -- References -- 14: Fluid Management in COVID-19 ICU Patients -- 14.1  Introduction -- 14.2  Why Patients with COVID-19 Can Develop Acute Circulatory Failure? -- 14.2.1  Hypovolemia -- 14.2.2  Vasoplegia -- 14.2.3  Impaired Left Heart Function -- 14.2.4  Right Ventricular (RV) Dysfunction or Failure -- 14.3  Consequences of Fluid Therapy in COVID-19 Patients with Shock -- 14.4  How to Assess the Benefits and the Risks of Fluid Administration in COVID-



19 Patients with Shock? -- 14.5  Summary -- 14.6  Conclusion -- References -- 15: Electrolytes in the ICU -- 15.1  Introduction -- 15.2  Physiology and Pathophysiology -- 15.2.1  Sodium: Regulator of Osmolality -- 15.2.1.1  Physiology -- 15.2.1.2  Pathophysiology -- 15.2.2  Potassium: Determinant of Excitability -- 15.2.2.1  Physiology -- 15.2.2.2  Pathophysiology -- 15.2.3  Magnesium: Membrane Stabilizer -- 15.2.3.1  Physiology -- 15.2.3.2  Pathophysiology -- 15.2.4  Calcium: Conduction and Contraction -- 15.2.4.1  Physiology.

15.2.4.2  Pathophysiology.