|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910348257503321 |
|
|
Autore |
Adam Jean-Michel |
|
|
Titolo |
Récit et connaissance / / François Laplantine, Joseph Lévy, Jean-Baptiste Martin, Alexis Nouss |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Lyon, : Presses universitaires de Lyon, 2018 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (328 p.) |
|
|
|
|
|
|
Altri autori (Persone) |
|
AlmeidaMiguel Vale de |
BernardRégis |
CercletDenis |
ChissJean-Louis |
ComellesJosep M |
DumouchelPaul |
FerreiraJerusa Pires |
GelasBruno |
JacquinPhilippe |
LaéJean-François |
LaplantineFrançois |
LemieuxRaymond |
LévyJoseph |
LévyJoseph J |
MartinJean-Baptiste |
MeintelDeirdre |
NoussAlexis |
PandolfiMariella |
PordeusIsmael |
RobinRégine |
SavardRémy |
SilvaJosé Carlos Gomes da |
SimonSherry |
VieiraNelson H |
ZupancicMetka |
|
|
|
|
|
|
|
|
Soggetti |
|
Literary Theory & Criticism |
Anthropology |
récit |
mythe |
utopie |
narration |
|
|
|
|
|
|
|
|
|
|
|
|
littérature |
fiction |
sociologie |
interdiscipline |
connaissance |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
Après un long déclin consécutif aux bouleversements idéologiques des xviie et xviiie siècles, le récit redevient, sous des formes nouvelles, vecteur et facteur de connaissance. Les contributions de vingt-cinq chercheurs américains et européens travaillant dans des disciplines aussi diverses que l'anthropologie, la sociologie, les études littéraires, la linguistique, le journalisme, examinent comment la réémergence du récit est susceptible d'entraîner la redéfinition et la valorisation d'une connaissance qui ne serait plus contrainte par les normes de la rationalité et de l'objectivité qui ont soutenu l'idéologie scientifique. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910557611703321 |
|
|
Autore |
de Fátima Domingues Maria |
|
|
Titolo |
Wearable and BAN Sensors for Physical Rehabilitation and eHealth Architectures |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Basel, : MDPI - Multidisciplinary Digital Publishing Institute, 2022 |
|
|
|
|
|
|
|
Descrizione fisica |
|
1 electronic resource (204 p.) |
|
|
|
|
|
|
Soggetti |
|
Technology: general issues |
History of engineering & technology |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
The demographic shift of the population towards an increase in the number of elderly citizens, together with the sedentary lifestyle we are adopting, is reflected in the increasingly debilitated physical health of the population. The resulting physical impairments require rehabilitation therapies which may be assisted by the use of wearable sensors or body area network sensors (BANs). The use of novel technology for medical therapies can also contribute to reducing the costs in healthcare systems and decrease patient overflow in medical centers. Sensors are the primary enablers of any wearable medical device, with a central role in eHealth architectures. The accuracy of the acquired data depends on the sensors; hence, when considering wearable and BAN sensing integration, they must be proven to be accurate and reliable solutions. This book is a collection of works focusing on the current state-of-the-art of BANs and wearable sensing devices for physical rehabilitation of impaired or debilitated citizens. The manuscripts that compose this book report on the advances in the research related to different sensing technologies (optical or electronic) and body area network sensors (BANs), their design and implementation, advanced signal processing techniques, and the application of these technologies in areas such as physical rehabilitation, robotics, medical diagnostics, and therapy. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910877036303321 |
|
|
Titolo |
Advanced mapping of environmental data : geostatistics, machine learning, and Bayesian maximum entropy / / edited by Mikhail Kanevski |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London, : ISTE, Ltd. |
|
Hoboken, NJ, : J. Wiley, c2008 |
|
|
|
|
|
|
|
|
|
ISBN |
|
9780470611463 (e-book) |
9781848210608 (hbk.) |
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xiii, 313 p.) : ill |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Geology - Statistical methods |
Machine learning |
Bayesian statistical decision theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Chapter 1. Advanced Mapping of Environmental Data: Introduction -- Chapter 2. Environmental Monitoring Network Characterization and Clustering -- Chapter 3. Geostatistics: Spatial Predictions and Simulations -- Chapter 4. Spatial Data Analysis and Mapping Using Machine Learning Algorithms -- Chapter 5. Advanced Mapping of Environmental Spatial Data: Case Studies -- Chapter 6. Bayesian Maximum Entropy – BME -- Index. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book combines geostatistics and global mapping systems to present an up-to-the-minute study of environmental data. Featuring numerous case studies, the reference covers model dependent (geostatistics) and data driven (machine learning algorithms) analysis techniques such as risk mapping, conditional stochastic simulations, descriptions of spatial uncertainty and variability, artificial neural networks (ANN) for spatial data, Bayesian maximum entropy (BME), and more. |
|
|
|
|
|
|
|
| |