| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISA996466549803316 |
|
|
Autore |
Kha Minh |
|
|
Titolo |
Liouville-Riemann-Roch theorems on Abelian coverings / / Minh Kha, Peter Kuchment |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2021] |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2021.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XII, 96 p. 2 illus., 1 illus. in color.) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Mathematics ; ; Volume 2245 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Differential equations, Elliptic |
Riemann-Roch theorems |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Preliminaries -- The Main Results -- Proofs of the Main Results -- Specific Examples of Liouville-Riemann-Roch Theorems -- Auxiliary Statements and Proofs of Technical Lemmas -- Final Remarks and Conclusions. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book is devoted to computing the index of elliptic PDEs on non-compact Riemannian manifolds in the presence of local singularities and zeros, as well as polynomial growth at infinity. The classical Riemann–Roch theorem and its generalizations to elliptic equations on bounded domains and compact manifolds, due to Maz’ya, Plameneskii, Nadirashvilli, Gromov and Shubin, account for the contribution to the index due to a divisor of zeros and singularities. On the other hand, the Liouville theorems of Avellaneda, Lin, Li, Moser, Struwe, Kuchment and Pinchover provide the index of periodic elliptic equations on abelian coverings of compact manifolds with polynomial growth at infinity, i.e. in the presence of a "divisor" at infinity. A natural question is whether one can combine the Riemann–Roch and Liouville type results. This monograph shows that this can indeed be done, however the answers are more intricate than one might initially expect. Namely, the interaction between the finite divisor and the point at infinity is non-trivial. The text is targeted towards researchers in PDEs, geometric analysis, and mathematical physics. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910557520103321 |
|
|
Autore |
Díaz Mario |
|
|
Titolo |
Modulation of Ion Channels and Ionic Pumps by Fatty Acids: Implications in Physiology and Pathology |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (135 p.) |
|
|
|
|
|
|
Collana |
|
Frontiers Research Topics |
|
|
|
|
|
|
Soggetti |
|
Physiology |
Science: general issues |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact |
|
|
|
|
|
|
|
| |