1.

Record Nr.

UNICAMPANIASUN0019686

Autore

Meltzer, Bernard N.

Titolo

L'interazionismo simbolico : genesi, sviluppi e valutazione critica / Bernard N. Meltzer, John W. Petras, Larry T. Reynolds ; edizione italiana a cura di Mario Melone

Pubbl/distr/stampa

Milano : Franco Angeli, [1980]

ISBN

88-204-1834-7

Descrizione fisica

127 p. ; 22 cm.

Altri autori (Persone)

Reynolds, Larry T.

Petras, John W.

Disciplina

301.15

Soggetti

Interazione simbolica - Teorie

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNICAMPANIASUN0021053

Titolo

Air monitoring by spectroscopic techniques / edited by Markus W. Sigrist

Pubbl/distr/stampa

New York, : Wiley, c1994

ISBN

04-7155-875-3

Descrizione fisica

xxv, 531 p. : ill., maps ; 24 cm.

Disciplina

621.366

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

3.

Record Nr.

UNINA9910557509803321

Autore

Kujawa Sebastian

Titolo

Artificial Neural Networks in Agriculture

Pubbl/distr/stampa

Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021

Descrizione fisica

1 online resource (283 p.)

Soggetti

Biology, life sciences

Research & information: general

Technology, engineering, agriculture

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

Modern agriculture needs to have high production efficiency combined with a high quality of obtained products. This applies to both crop and livestock production. To meet these requirements, advanced methods of data analysis are more and more frequently used, including those



derived from artificial intelligence methods. Artificial neural networks (ANNs) are one of the most popular tools of this kind. They are widely used in solving various classification and prediction tasks, for some time also in the broadly defined field of agriculture. They can form part of precision farming and decision support systems. Artificial neural networks can replace the classical methods of modelling many issues, and are one of the main alternatives to classical mathematical models. The spectrum of applications of artificial neural networks is very wide. For a long time now, researchers from all over the world have been using these tools to support agricultural production, making it more efficient and providing the highest-quality products possible.