|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910557498803321 |
|
|
Autore |
Semprucci Federica |
|
|
Titolo |
Meiofauna Biodiversity and Ecology |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 electronic resource (254 p.) |
|
|
|
|
|
|
Soggetti |
|
Research & information: general |
Biology, life sciences |
Ecological science, the Biosphere |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
Sedimentary habitats cover the vast majority of the ocean floor and constitute the largest ecosystem on Earth. These systems supply fundamental services to human beings, such as food production and nutrient recycling. It is well known that meiofauna are an abundant and ubiquitous component of sediments, even though their biodiversity and importance in marine ecosystem functioning remain to be fully investigated. In this book, the meiofaunal biodiversity trends in marine habitats worldwide are documented, along with the collection of empirical evidence on their role in ecosystem services, such as the production, consumption, and decomposition of organic matter, and energy transfer to higher and lower trophic levels. Meiofaunal activities, like feeding and bioturbation, induce changes in several physico-chemical and biological properties of sediments, and might increase the resilience of the benthic ecosystem processes that are essential for the supply of ecosystem goods and services required by humans. As a key component of marine habitats, the taxonomical and functional aspects of the meiofaunal community are also used for the ecological assessment of the sediments’ quality status, providing important information on the anthropogenic impact of benthos. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910557290503321 |
|
|
Autore |
Vreča Polona |
|
|
Titolo |
Use of Water Stable Isotopes in Hydrological Process |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 electronic resource (296 p.) |
|
|
|
|
|
|
Soggetti |
|
Research & information: general |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
Stable and radioactive isotopes in water are powerful tools in the tracking of the path of water molecules through the whole water cycle. In the last decade, a considerable number of studies have been published on the use of water isotopes, and their number is ever-growing. The main reason is the development of new measurement techniques (i.e., laser absorption spectroscopy) that allow measurements of stable isotope ratios at ever-higher resolutions. Therefore, this compilation of papers has been published to address the current state-of-the-art water isotope methods, applications, and interpretations of hydrological processes, and to contribute to the rapidly growing repository of isotope data, which is important for future water resource management. We are pleased to present here a book with new findings in thirteen original research papers and one review paper issued in the Water MDPI Special Issue (SI) “Use of Water Isotopes in Hydrological Processes”. The authors report the use of water isotopes in hydrological processes worldwide, including studies at both local and regional scales related to either precipitation dynamics or to different applications of water isotopes in combination with other hydrochemical parameters in investigations of surface water, snowmelt, soil water, groundwater and xylem water to identify the hydrological and geochemical processes. |
|
|
|
|
|
|
|
| |