|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910557430203321 |
|
|
Autore |
Zhang Yong |
|
|
Titolo |
New Advances in High-Entropy Alloys |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2021 |
|
|
|
|
|
|
|
|
|
Descrizione fisica |
|
1 electronic resource (652 p.) |
|
|
|
|
|
|
Soggetti |
|
Research & information: general |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
In recent years, people have tended to adjust the degree of order/disorder to explore new materials. The degree of order/disorder can be measured by entropy, and it can be divided into two parts: topological disordering and chemical disordering. The former mainly refers to order in the spatial configuration, e.g., amorphous alloys which show short-range ordering but without long-range ordering, while the latter mainly refers to the order in the chemical occupancy, that is to say, the components can replace each other, and typical representatives are high-entropy alloy (HEAs). HEAs, in sharp contrast to traditional alloys based on one or two principal elements, have one striking characteristic: their unusually high entropy of mixing. They have not received much noticed until the review paper entitled “Microstructure and Properties of High-Entropy Alloys” was published in 2014 in the journal of Progress in Materials Science. Numerous reports have shown they exhibit five recognized performance characteristics, namely, strength–plasticity trade-off breaking, irradiation tolerance, corrosion resistance, high-impact toughness within a wider temperature range, and high thermal stability. So far, the development of HEAs has gone through three main stages: 1. Quinary equal-atomic single-phase solid solution alloys; 2. Quaternary or quinary non-equal-atomic multiphase alloys; 3. Medium-entropy alloys, high-entropy fibers, high-entropy films, lightweight HEAs, etc. Nowadays, more in-depth research on high-entropy alloys is urgently |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910557254303321 |
|
|
Autore |
Lee Learn-Han |
|
|
Titolo |
The Search for Biological Active Agent(s) From Actinobacteria, 2nd Edition |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
|
|
|
|
Descrizione fisica |
|
1 electronic resource (312 p.) |
|
|
|
|
|
|
Soggetti |
|
Science: general issues |
Medical microbiology & virology |
Microbiology (non-medical) |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
There is a large market demand for new drugs. The existing chronic or common ailments without cures, development of new diseases with unknown causes, and the widespread existence of antibiotic-resistant pathogens, have driven this field of research further by looking at all potential sources of natural products. To date, microbes have made a significant contribution to the health and well-being of people globally. The discoveries of useful metabolites produced by microbes have resulted in a significant proportion of pharmaceutical products in today’s market. Therefore, the investigation and identification of bioactive compound(s) producing microbes is always of great interest to researchers. Actinobacteria are one of the most important and efficient groups of natural metabolite producers. Among the numerous genera, Streptomyces have been recognized as prolific producers of useful natural compounds, as they provide more than half of the naturally-occurring antibiotics isolated to-date and continue to emerge as the primary source of new bioactive compounds. Certainly, these potentials have attracted ample research interest and a wide range of |
|
|
|
|
|
|
|
|
|
|
biological activities have been subsequently screened by researchers with the utilization of different In vitro and In vivo model of experiments. Literature evidence has shown that a significant number of interesting compounds produced by Actinobacteria were exhibiting either strong anticancer or neuroprotective activity. The further in depth studies have then established the modulation of apoptotic pathway was involved in those observed bioactivities. These findings indirectly prove the biopharmaceutical potential possessed by Actinobacteria and at the same time substantiate the importance of diverse pharmaceutical evaluations on Actinobacteria. In fact, many novel compounds discovered from Actinobacteria with strong potential in clinical applications have been developed into new drugs by pharmaceutical companies. Together with the advancement in science and technology, it is predicted that there would be an expedition in discoveries of new bioactive compounds producing Actinobacteria from various sources, including soil and marine sources. In light of these current needs, and great interest in the scope of this research, this book seeks to contribute on the investigation of different biological active compound(s) producing actinobacteria which are exhibiting antimicrobial, antioxidant, neuroprotective, anticancer activities and similar. |
|
|
|
|
|
| |