1.

Record Nr.

UNISALENTO991003639449707536

Autore

Caramia, Federica

Titolo

Il metodo local branching per la programmazione mista intera. Tesi di laurea / laureanda Federica Caramia ; relat. Paolo Nobili

Pubbl/distr/stampa

Lecce : Università del Salento. Corso di laurea in Matematica, a.a. 2017-18

Descrizione fisica

31 p. : ill. ; 30 cm

Classificazione

AMS 90C11

AMS 90C57

Altri autori (Persone)

Nobili, Paolo

Disciplina

510

Soggetti

Mathematical programming

Polyhedral combinatorics

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910557283803321

Autore

Caraffini Fabio

Titolo

Evolutionary Computation & Swarm Intelligence

Pubbl/distr/stampa

Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020

Descrizione fisica

1 online resource (286 p.)

Soggetti

Information technology industries

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

The vast majority of real-world problems can be expressed as an optimisation task by formulating an objective function, also known as cost or fitness function. The most logical methods to optimise such a function when (1) an analytical expression is not available, (2) mathematical hypotheses do not hold, and (3) the dimensionality of the problem or stringent real-time requirements make it infeasible to find an exact solution mathematically are from the field of Evolutionary Computation (EC) and Swarm Intelligence (SI). The latter are broad and still growing subjects in Computer Science in the study of metaheuristic approaches, i.e., those approaches which do not make any assumptions about the problem function, inspired from natural phenomena such as, in the first place, the evolution process and the collaborative behaviours of groups of animals and communities, respectively. This book contains recent advances in the EC and SI fields, covering most themes currently receiving a great deal of attention such as benchmarking and tunning of optimisation algorithms, their algorithm design process, and their application to solve challenging real-world problems to face large-scale domains.