1.

Record Nr.

UNINA9910555162903321

Autore

Manan Zainuddin Abdul

Titolo

Modeling, simulation, and optimization of supercritical and subcritical fluid extraction processes / / Zainuddin Abdul Manan, Gholamreza Zahedi, Ana Najwa Mustapa

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley : , : American Institute of Chemical Engineers, , [2022]

©2022

ISBN

1-119-30320-6

1-119-30319-2

1-119-30321-4

Descrizione fisica

1 online resource (291 pages)

Disciplina

660.284248

Soggetti

Supercritical fluid extraction - Simulation methods

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Nomenclature -- Chapter 1 Fundamentals of Supercritical and Subcritical Fluid Extraction -- 1.1 Introduction -- 1.2 Supercritical Fluid Properties -- 1.3 Subcritical Condition -- 1.4 Physical Properties of Subcritical Fluid -- 1.5 Principles of Sub- and Supercritical Extraction Process -- 1.5.1 Solid Sample Extraction -- 1.5.2 Liquid Sample Extraction -- 1.6 Applications of SCF Extraction -- 1.6.1 Decaffeination of Coffee and Tea -- 1.6.2 Removal of FFA in Fats and Oils -- 1.6.3 Enrichment of Tocopherols -- 1.6.4 Carotenes from Crude Palm Oil and from Palm Fatty Acid Esters -- 1.7 Solubility of Solutes in SCFs -- 1.8 Solute-Solvent Compatibility -- 1.9 Solubility and Selectivity of Low-Volatility Organic Compounds in SCFs -- 1.10 Method of Solubility Measurement -- 1.10.1 Static Method -- 1.10.2 Dynamic Method -- 1.11 Determination of Solvent -- 1.11.1 Carbon Dioxide (CO2) -- 1.11.2 1,1,1,2-Tetrafluoroethane (R134a) as a Solvent -- 1.12 Important Parameter Affecting Supercritical Extraction Process -- 1.12.1 Pressure and Temperature -- 1.12.2 Solvent Flowrate -- 1.12.3 Cosolvent -- 1.12.4 Moisture Content -- 1.12.5 Raw Material -- 1.13



Profile of Extraction Curves -- 1.14 Design and Scale Up -- Chapter 2 Modeling and Optimization Concept -- 2.1 SFE Modeling -- 2.1.1 Importance of Knowing the Solid Matrix and Selecting a Suitable Model -- 2.1.2 Different Modeling Approaches in SFE -- 2.1.2.1 Experimental Models -- 2.1.2.2 Models Which Are Based on Similarity between Heat and Mass Transfer -- 2.1.2.3 Models Based on Conservation Balance Equations -- 2.2 First Principle Modeling -- 2.2.1 The Equation of Continuitya -- 2.2.2 The Equation of Motion in Terms of τ -- 2.2.3 The Equation of Energy in Terms of q -- 2.3 Hybrid Modeling or Gray Box -- 2.4 ANN.

2.4.1 Simple Neural Network Structure -- 2.4.1.1 Transfer Function -- 2.4.1.2 Activation Functions -- 2.4.1.3 Learning Rules -- 2.4.2 Network Architecture -- 2.5 Fuzzy Logic -- 2.5.1 Boolean Logic and Fuzzy Logic -- 2.5.2 Fuzzy Sets -- 2.5.3 Membership Function -- 2.5.3.1 Membership Function Types -- 2.5.4 Fuzzy Rules -- 2.5.4.1 Classical Rules and Fuzzy Rules -- 2.5.5 Fuzzy Expert System and Fuzzy Inference -- 2.5.5.1 Mamdani FIS -- 2.5.5.1.1 Fuzzification -- 2.5.5.1.2 Fuzzy Logical Operation and Rule Evaluation -- 2.5.5.1.3 Implication Method -- 2.5.5.1.4 Aggregation of the Rule Outputs -- 2.5.5.1.5 Defuzzification -- 2.5.5.2 Sugeno Fuzzy Inference -- 2.6 Neuro Fuzzy -- 2.6.1 Structure of a Neuro Fuzzy System -- 2.6.2 Adaptive Neuro Fuzzy Inference System (ANFIS) -- 2.6.2.1 Learning in the ANFIS Model -- 2.7 Optimization -- 2.7.1 Traditional Optimization Methods -- 2.7.2 Evolutionary Algorithm -- 2.7.3 Simulated Annealing Algorithm -- 2.7.4 Genetic Algorithm -- 2.7.4.1 Genetic Algorithm Definitions -- 2.7.4.2 Genetic Algorithms Overview -- 2.7.4.3 Preliminary Considerations -- 2.7.4.4 Overview of Genetic Programming -- 2.7.4.5 Implementation Details -- 2.7.4.5.1 Selection Operator -- 2.7.4.5.2 Crossover Operator -- 2.7.4.5.3 Mutation Operator -- 2.7.4.6 Effects of Genetic Operators -- 2.7.4.7 The Algorithms -- Chapter 3 Physical Properties of Palm Oil as Solute -- 3.1 Introduction -- 3.2 Palm Oil Fruit -- 3.3 Palm Oil Physical and Chemical Properties -- 3.3.1 Palm Oil Triglycerides -- 3.3.2 Minor Components in Palm Oil -- 3.4 Vegetable Oil Refining -- 3.5 Conventional Palm Oil Refining Process -- 3.5.1 Chemical Refining -- 3.5.2 Physical Refining -- 3.5.3 Effect of Palm Oil Refining -- 3.6 Conclusions -- Chapter 4 First Principle Supercritical and Subcritical Fluid Extraction Modeling: Part I: Modeling Methodology -- 4.1 Introduction.

4.2 Phase Equilibrium Modeling -- 4.3 The Redlich-Kwong-Aspen Equation of State -- 4.3.1 Calculations of Pure Component Parameters for the RKA-EOS -- 4.3.2 Binary Mixture Calculations -- 4.4 Palm Oil System Characterization -- 4.4.1 Palm Oil Triglycerides -- 4.4.2 Free Fatty Acids -- 4.4.3 Palm Oil Minor Components -- 4.5 Development of Aspen Plus® Physical Property Database for Palm Oil Components -- 4.5.1 Vapor Pressure Estimation -- 4.5.2 Estimation of Pure Component Critical Properties -- 4.5.2.1 Critical Properties Estimation Using Normal Boiling Point -- 4.5.2.2 Critical Properties Estimation Using One Vapor Pressure Point -- 4.6 Binary Interaction Parameters Calculations -- 4.7 Supercritical Fluid Extraction Process Development -- 4.7.1 Hydrodynamics of Countercurrent SFE Process -- 4.7.2 Solubility of Palm Oil in Supercritical CO2 -- 4.7.3 Process Modeling and Simulation -- 4.7.3.1 Simple Countercurrent Extraction -- 4.7.3.2 Countercurrent Extraction with External Reflux -- 4.7.4 Process Analysis and Optimization -- Part II: Results and Discussion -- 4.8 Palm Oil Component Physical Properties -- 4.8.1 Vapor Pressure of Palm Oil Components -- 4.8.2 Pure Component Critical Properties -- 4.9 Regression of Interaction Parameters for the Palm Oil Components-Supercritical CO2 Binary System -- 4.9.1 Binary System: Triglyceride -



Supercritical CO2 -- 4.9.2 Binary System: Oleic Acid - Supercritical CO2 -- 4.9.3 Binary System: α-Tocopherol - Supercritical CO2 -- 4.9.4 Binary System: β-Carotene - Supercritical CO2 -- 4.9.5 Temperature-Dependent Interaction Parameters -- 4.10 Phase Equilibrium Calculation for the Palm Oil -Supercritical CO2 System -- 4.11 Ternary System: CO2 - Triglycerides - Free Fatty Acids -- 4.12 Distribution Coefficients of Palm Oil Components -- 4.13 Separation Factor Between Palm Oil Components.

4.13.1 Separation Factor Between Fatty Acids and Triglycerides -- 4.13.2 Separation Factor Between Fatty Acids and α-Tocopherols -- 4.14 Base Case Process Simulation -- 4.14.1 Palm Oil Deacidification Process -- 4.14.1.1 Solubility of Palm Oil in Supercritical CO2 -- 4.14.1.2 Palm Oil Deacidification Process: Comparison to Pilot Plant Results -- 4.15 Conclusion -- Chapter 5 Application of Other Supercritical and Subcritical Modeling Techniques -- 5.1 Mass Transfer, Correlation, ANN, and Neuro Fuzzy Modeling of Sub- and Supercritical Fluid Extraction Processes -- 5.2 Mass Transfer Model -- 5.3 ANN Modeling -- 5.4 Neuro Fuzzy Modeling -- 5.5 ANFIS and Gray-box Modeling of Anise Seeds -- 5.6 White Box SFE Modeling of Anise -- 5.6.1 Gray Box Parameters -- 5.6.2 ANFIS -- 5.6.2.1 Preprocessing -- 5.6.3 Gray Box -- 5.7 Results and Discussion -- 5.7.1 ANFIS -- 5.7.2 Gray Box Modeling Results -- 5.7.2.1 Black Box -- 5.7.3 Comparison of ANFIS and Gray Box Models with ANN and White Box Models -- 5.8 Introduction - Statistical versus ANN Modeling -- 5.9 Supercritical Carbon Dioxide Extraction of Q. infectoria Oil -- 5.9.1 Materials and Methods -- 5.9.2 Experimental Design -- 5.9.3 Artificial Neural Network Modeling -- 5.10 Subcritical Ethanol Extraction of Java Tea Oil -- 5.10.1 Artificial Neural Network Modeling -- 5.11 SFE of Oil from Passion Fruit Seed -- 5.11.1 Experimental Procedures -- 5.11.2 RSM Statistical Modeling -- 5.11.3 ANN Modeling of Passion Fruit Seed Oil Extraction with Supercritical Carbon Dioxide -- Chapter 6 Experimental Design Concept and Notes on Sample Preparation and SFE Experiments -- 6.1 Introduction -- 6.2 Experimental Design -- 6.3 Statistical Optimization -- 6.4 Optimization of Palm Oil Subcritical R134a Extraction -- 6.4.1 Effect of Temperature and Pressure -- 6.4.2 Model Fitting -- 6.4.3 Process Optimization.

6.5 Comparison of Subcritical R134a and Supercritical CO2 Extraction of Palm Oil -- 6.5.1 Extraction Performance -- 6.5.2 Economic Factor -- 6.6 Sample Pretreatment -- 6.6.1 Moisture Content Reduction -- 6.6.2 Sample Size Reduction -- 6.7 New Trends in Pretreatment -- 6.8 Optimal Pretreatment -- Chapter 7 Supercritical and Subcritical Optimization: Part I: First Principle Optimization -- 7.1 Introduction -- 7.2 Evaluation of Separation Performance -- 7.2.1 Effects of Temperature and Pressure -- 7.2.2 Effect of the Number of Stages -- 7.2.3 Effect of Solvent-to-Feed Ratio -- 7.2.4 Effect of Reflux Ratio -- 7.3 Parameter Optimization of Palm Oil Deacidification Process -- 7.3.1 Simple Countercurrent Extraction (Without Reflux) -- 7.3.2 Countercurrent Extraction with Reflux -- 7.4 Proposed Flowsheet for Palm Oil Refining Process -- 7.5 Conclusions -- Part II: ANN, GA Statistical Optimization -- 7.6 Introduction -- 7.7 Traditional Optimization -- 7.8 Nimbin Extraction Process Optimization -- 7.9 Genetic Algorithm for Mass Transfer Correlation Development -- 7.10 Optimizing Chamomile Extraction -- 7.11 Statistical and ANN Optimization -- 7.12 Conclusion -- Appendix A Calculation of the Composition for Palm Oil TG (Lim et al. 2003) -- Appendix B Calculation of Distribution Coefficient and Separation Factor (Lim et al. 2003) -- Appendix C Calculation of Palm Oil Solubility in Supercritical CO2 (Lim et al. 2003) -- References -- Index -- EULA.