1.

Record Nr.

UNINA9910555092203321

Titolo

Flow-induced vibration handbook for nuclear and process equipment / / edited by Michel J. Pettigrew, Colette E. Taylor, Nigel J. Fisher

Pubbl/distr/stampa

Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]

©2022

ISBN

1-119-81097-3

1-119-81099-X

1-119-81098-1

Descrizione fisica

1 online resource (494 pages)

Collana

Wiley-ASME Press Ser.

Disciplina

532.5

Soggetti

Nuclear power plants - Piping - Vibration

Chemical plants - Piping - Vibration

Pressure vessels - Vibration

Pressure vessels - Fluid dynamics

Piping - Fluid dynamics

Hydrodynamics

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Contributors -- Chapter 1 Introduction and Typical Vibration Problems -- 1.1 Introduction -- 1.2 Some Typical Component Failures -- 1.3 Dynamics of Process System Components -- 1.3.1 Multi-Span Heat Exchanger Tubes -- 1.3.2 Other Nuclear and Process Components -- Notes -- References -- Chapter 2 Flow-Induced Vibration of Nuclear and Process Equipment: An Overview -- 2.1 Introduction -- 2.1.1 Flow-Induced Vibration Overview -- 2.1.2 Scope of a Vibration Analysis -- 2.2 Flow Calculations -- 2.2.1 Flow Parameter Definition -- 2.2.2 Simple Flow Path Approach -- 2.2.3 Comprehensive 3-D Approach -- 2.2.4 Two-Phase Flow Regime -- 2.3 Dynamic Parameters -- 2.3.1 Hydrodynamic Mass -- 2.3.2 Damping -- 2.4 Vibration Excitation Mechanisms -- 2.4.1 Fluidelastic Instability --



2.4.2 Random Turbulence Excitation -- 2.4.3 Periodic Wake Shedding -- 2.4.4 Acoustic Resonance -- 2.4.5 Susceptibility to Resonance -- 2.5 Vibration Response Prediction -- 2.5.1 Fluidelastic Instability -- 2.5.2 Random Turbulence Excitation -- 2.5.3 Periodic Wake Shedding -- 2.5.4 Acoustic Resonance -- 2.5.5 Example of Vibration Analysis -- 2.6 Fretting-Wear Damage Considerations -- 2.6.1 Fretting-Wear Assessment -- 2.6.2 Fretting-Wear Coefficients -- 2.6.3 Wear Depth Calculations -- 2.7 Acceptance Criteria -- 2.7.1 Fluidelastic Instability -- 2.7.2 Random Turbulence Excitation -- 2.7.3 Periodic Wake Shedding -- 2.7.4 Tube-to-Support Clearance -- 2.7.5 Acoustic Resonance -- 2.7.6 Two-Phase Flow Regimes -- Note -- References -- Chapter 3 Flow Considerations -- 3.1 Definition of the Problem -- 3.2 Nature of the Flow -- 3.2.1 Introduction -- 3.2.2 Flow Parameter Definitions -- 3.2.3 Vertical Bubbly Flow -- 3.2.4 Flow Around Bluff Bodies -- 3.2.5 Shell-Side Flow in Tube Bundles.

3.2.6 Air-Water versus Steam-Water Flows -- 3.2.7 Effect of Nucleate Boiling Noise -- 3.2.8 Summary -- 3.3 Simplified Flow Calculation -- 3.4 Multi-Dimensional Thermalhydraulic Analysis -- 3.4.1 Steam Generator -- 3.4.2 Other Heat Exchangers -- Acronyms -- Nomenclature -- Subscripts -- Notes -- References -- Chapter 4 Hydrodynamic Mass, Natural Frequencies and Mode Shapes -- 4.1 Introduction -- 4.2 Total Tube Mass -- 4.2.1 Single-Phase Flow -- 4.2.2 Two-Phase Flow -- 4.3 Free Vibration Analysis of Straight Tubes -- 4.3.1 Free Vibration Analysis of a Single-Span Tube -- 4.3.2 Free Vibration Analysis of a Two-Span Tube -- 4.3.3 Free Vibration Analysis of a Multi-Span Tube -- 4.4 Basic Theory for Curved Tubes -- 4.4.1 Theory of Curved Tube In-Plane Free Vibration -- 4.4.2 Theory of Curved Tube Out-of-Plane Free Vibration -- 4.5 Free Vibration Analysis of U-Tubes -- 4.5.1 Setting Boundary Conditions for the In-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.2 Development of the In-Plane Eigenvalue Matrix for a Symmetric U-Tube -- 4.5.3 Generation of Eigenvalue Matrices for Out-of-Plane Free Vibration Analysis of U-Tubes Possessing Geometric Symmetry -- 4.5.4 Free Vibration Analysis of U-Tubes Which Do Not Possess Geometric Similarity -- 4.6 Concluding Remarks -- Nomenclature -- References -- Chapter 5 Damping of Cylindrical Structures in Single-Phase Fluids -- 5.1 Introduction -- 5.2 Energy Dissipation Mechanisms -- 5.3 Approach -- 5.4 Damping in Gases -- 5.4.1 Effect of Number of Supports -- 5.4.2 Effect of Frequency -- 5.4.3 Vibration Amplitude -- 5.4.4 Effect of Diameter or Mass -- 5.4.5 Effect of Side Loads -- 5.4.6 Effect of Higher Modes -- 5.4.7 Effect of Support Thickness -- 5.4.8 Effect of Clearance -- 5.5 Design Recommendations for Damping in Gases -- 5.6 Damping in Liquids -- 5.6.1 Tube-to-Fluid Viscous Damping.

5.6.2 Damping at the Supports -- 5.6.3 Squeeze-Film Damping -- 5.6.4 Damping due to Sliding -- 5.6.5 Semi-Empirical Formulation of Tube-Support Damping -- 5.7 Discussion -- 5.8 Design Recommendations for Damping in Liquids -- 5.8.1 Simple Criterion Based on Available Data -- 5.8.2 Criterion Based on the Formulation of Energy Dissipation Mechanisms -- Nomenclature -- Subscript -- References -- Chapter 6 Damping of Cylindrical Structures in Two-Phase Flow -- 6.1 Introduction -- 6.2 Sources of Information -- 6.3 Approach -- 6.4 Two-Phase Flow Conditions -- 6.4.1 Definition of Two-Phase Flow Parameters -- 6.4.2 Flow Regime -- 6.5 Parametric Dependence Study -- 6.5.1 Effect of Flow Velocity -- 6.5.2 Effect of Void Fraction -- 6.5.3 Effect of Confinement -- 6.5.4 Effect of Tube Mass -- 6.5.5 Effect of Tube Vibration Frequency -- 6.5.6 Effect of Tube Bundle Configuration -- 6.5.7 Effect of Motion of Surrounding



Tubes -- 6.5.8 Effect of Flow Regime -- 6.5.9 Effect of Fluid Properties -- 6.6 Development of Design Guidelines -- 6.7 Discussion -- 6.7.1 Damping Formulation -- 6.7.2 Two-Phase Damping Mechanisms -- 6.8 Summary Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 7 Fluidelastic Instability of Tube Bundles in Single-Phase Flow -- 7.1 Introduction -- 7.2 Nature of Fluidelastic Instability -- 7.3 Fluidelastic Instability: Analytical Modelling -- 7.4 Fluidelastic Instability: Semi-Empirical Models -- 7.5 Approach -- 7.6 Important Definitions -- 7.6.1 Tube Bundle Configurations -- 7.6.2 Flow Velocity Definition -- 7.6.3 Critical Velocity for Fluidelastic Instability -- 7.6.4 Damping -- 7.6.5 Tube Frequency -- 7.7 Parametric Dependence Study -- 7.7.1 Flexible versus Rigid Tube Bundles -- 7.7.2 Damping -- 7.7.3 Pitch-to-Diameter Ratio, P/D -- 7.7.4 Fluidelastic Instability Formulation -- 7.8 Development of Design Guidelines.

7.9 In-Plane Fluidelastic Instability -- 7.10 Axial Flow Fluidelastic Instability -- 7.11 Concluding Remarks -- Nomenclature -- Subscript -- References -- Chapter 8 Fluidelastic Instability of Tube Bundles in Two-Phase Flow -- 8.1 Introduction -- 8.2 Previous Research -- 8.2.1 Flow-Induced Vibration in Two-Phase Axial Flow -- 8.2.2 Flow-Induced Vibration in Two-Phase Cross Flow -- 8.2.3 Damping Studies -- 8.3 Fluidelastic Instability Mechanisms in Two-Phase Cross Flow -- 8.4 Fluidelastic Instability Experiments in Air-Water Cross Flow -- 8.4.1 Initial Experiments in Air-Water Cross Flow -- 8.4.2 Behavior in Intermittent Flow -- 8.4.3 Effect of Bundle Geometry -- 8.4.4 Flexible versus Rigid Tube Bundle Behavior -- 8.4.5 Hydrodynamic Coupling -- 8.5 Analysis of the Fluidelastic Instability Results -- 8.5.1 Defining Critical Mass Flux and Instability Constant -- 8.5.2 Comparison with Results of Other Researchers -- 8.5.3 Summary of Air-Water Tests -- 8.6 Tube Bundle Vibration in Two-Phase Freon Cross Flow -- 8.6.1 Introductory Remarks -- 8.6.2 Background Information -- 8.6.3 Experiments in Freon Cross Flow -- 8.7 Freon Test Results and Discussion -- 8.7.1 Results and Analysis -- 8.7.2 Proposed Explanations -- 8.7.3 Concluding Remarks -- 8.7.4 Summary Findings -- 8.8 Fluidelastic Instability of U-Tubes in Air-Water Cross Flow -- 8.8.1 Experimental Considerations -- 8.8.2 U-Tube Dynamics -- 8.8.3 Vibration Response -- 8.8.4 Out-of-Plane Vibration -- 8.8.5 In-Plane Vibration -- 8.9 In-Plane (In-Flow) Fluidelastic Instability -- 8.9.1 In-Flow Experiments in a Wind Tunnel -- 8.9.2 In-Flow Experiments in Two-Phase Cross Flow -- 8.9.3 Single-Tube Fluidelastic Instability Results -- 8.9.4 Single Flexible Column and Central Cluster Fluidelastic Instability Results -- 8.9.5 Two Partially Flexible Columns.

8.9.6 In-Flow Fluidelastic Instability Results and Discussion. -- 8.10 Design Recommendations -- 8.10.1 Design Guidelines -- 8.10.2 Fluidelastic Instability with Intermittent Flow -- 8.11 Fluidelastic Instability in Two-Phase Axial Flow -- 8.12 Concluding Remarks -- Nomenclature -- Subscripts -- Note -- References -- Chapter 9 Random Turbulence Excitation in Single-Phase Flow -- 9.1 Introduction -- 9.2 Theoretical Background -- 9.2.1 Equation of Motion -- 9.2.2 Derivation of the Mean-Square Response -- 9.2.3 Simplification of Tube Vibration Response -- 9.2.4 Integration of the Transfer Function -- 9.2.5 Use of the Simplified Expression in Developing Design Guidelines -- 9.3 Literature Search -- 9.4 Approach Taken -- 9.5 Discussion of Parameters -- 9.5.1 Directional Dependence (Lift versus Drag) -- 9.5.2 Bundle Orientation -- 9.5.3 Pitch-to-Diameter Ratio (P/D) -- 9.5.4 Upstream Turbulence -- 9.5.5 Fluid Density (Gas versus Liquid) -- 9.5.6 Summary -- 9.6 Design Guidelines -- 9.7 Random Turbulence Excitation in Axial Flow -- Nomenclature -- References -- Chapter 10 Random Turbulence Excitation Forces Due to Two-Phase



Flow -- 10.1 Introduction -- 10.2 Background -- 10.3 Approach Taken to Data Reduction -- 10.4 Scaling Factor for Frequency -- 10.4.1 Definition of a Velocity Scale -- 10.4.2 Definition of a Length Scale -- 10.4.3 Dimensionless Reduced Frequency -- 10.4.4 Effect of Frequency -- 10.5 Scaling Factor for Power Spectral Density -- 10.5.1 Effect of Flow Regime -- 10.5.2 Effect of Void Fraction -- 10.5.3 Effect of Mass Flux -- 10.5.4 Effect of Tube Diameter -- 10.5.5 Effect of Correlation Length -- 10.5.6 Effect of Bundle and Tube-Support Geometry -- 10.5.7 Effect of Two-Phase Mixture -- 10.5.8 Effect of Nucleate Boiling -- 10.6 Dimensionless Power Spectral Density -- 10.7 Upper Bounds for Two-Phase Cross Flow Dimensionless Spectra.

10.7.1 Bubbly Flow.