1.

Record Nr.

UNINA9910554877903321

Titolo

RAFT polymerization : methods, synthesis, and applications / / edited by Graeme Moad, Ezio Rizzardo

Pubbl/distr/stampa

Weinheim, Germany : , : Wiley-VCH GmbH, , [2022]

©2022

ISBN

3-527-82136-8

3-527-82135-X

3-527-82134-1

Descrizione fisica

1 online resource (1280 pages)

Disciplina

547.28

Soggetti

Addition polymerization

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover -- Title Page -- Copyright -- Contents -- Preface -- Acknowledgements -- Chapter 1 Overview of RAFT Polymerization -- References -- Chapter 2 Terminology in Reversible Deactivation Radical Polymerization (RDRP) and Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization -- 2.1 Terminology for Reversible Deactivation Radical Polymerization (RDRP) -- 2.2 Terminology in Reversible Addition-Fragmentation Chain Transfer (RAFT) Polymerization -- 2.3 Terminology That Is Not Ratified by IUPAC -- References -- Chapter 3 How to Do a RAFT Polymerization -- 3.1 Introduction -- 3.2 IP Landscape -- 3.3 General Experimental Conditions -- 3.3.1 Initiator -- 3.3.2 Solvent -- 3.3.3 Temperature -- 3.3.4 Pressure -- 3.4 RAFT Polymerization of Styrene -- 3.4.1 Experimental Procedures for the RAFT Polymerization of Styrene -- 3.5 RAFT Polymerization of Methacrylates and Acrylates -- 3.5.1 Methacrylates -- 3.5.2 Acrylates -- 3.5.3 Experimental Procedures for the RAFT Polymerization of Methacrylates -- 3.5.4 Experimental Procedures for the RAFT Polymerization of Acrylates -- 3.6 RAFT Polymerization of Acrylamides and Methacrylamides -- 3.6.1 Methacrylamides -- 3.6.2 Acrylamides -- 3.6.3 Experimental Procedures for the RAFT Polymerization of Acrylamides and Methacrylamides -- 3.7 RAFT Polymerization of Vinyl Esters and Vinyl



Amides -- 3.7.1 Experimental Procedures for the RAFT Polymerization of Vinyl Esters and Vinyl Amides -- 3.8 Copolymers -- 3.8.1 Experimental Procedures for RAFT Copolymers -- 3.9 Block Copolymers -- 3.9.1 Experimental Procedures for RAFT Block Copolymers -- 3.10 Conclusion -- References -- Chapter 4 Kinetics and Mechanism of RAFT Polymerizations -- 4.1 Introduction -- 4.2 Ideal RAFT Polymerization Kinetics -- 4.3 Pulsed Laser Experiments in Conjunction with EPR Detection.

4.4 Quantum Chemical Calculations of the RAFT Equilibrium -- 4.5 Xanthate‐, Trithiocarbonate‐ and Dithiobenzoate‐Mediated Polymerizations -- 4.5.1 General Aspects of Actual RAFT Polymerizations -- 4.5.2 Xanthates -- 4.5.3 Trithiocarbonates -- 4.5.4 Dithiobenzoates -- 4.5.5 The 'Missing Step' Reaction -- 4.5.6 Kinetic Analysis of Dithiobenzoate‐Mediated BA Polymerizations -- 4.5.7 Quantum Chemical Calculations for the CIP* - CPDB Model System -- 4.5.8 Dithiobenzoate‐Mediated MMA Polymerizations and Model Systems -- 4.6 Summary of Results and Concluding Remarks -- References -- Chapter 5 RAFT Polymerization: Mechanistic Considerations -- 5.1 Introduction -- 5.2 Role of the R Group -- 5.2.1 Chain Transfer and Leaving Group Ability -- 5.2.2 Measurement of the Chain Transfer Constant -- 5.2.3 Mechanistic Implications for Block Copolymer Synthesis -- 5.2.4 Re‐Initiation and Initialization -- 5.2.5 R Group Stability and Implications for Chain Transfer Kinetics -- 5.2.6 Differential Leaving Group Ability and Mechanistic Discrimination -- 5.3 Role of the Z Group -- 5.3.1 The Z Group and Radical Addition to the Thiocarbonyl -- 5.3.2 The Z‐Group and Side Reactions -- 5.3.3 Manipulating Z to Dictate Reactivity: 'Switchable' RAFT Agents -- 5.3.4 The Z‐Group and Reaction Kinetics -- 5.3.5 Intermediate Radical Termination -- 5.3.6 Slow Fragmentation of the Intermediate Radical -- 5.3.7 Stability of the Z Group During Reaction -- 5.4 Light Effects on the Rate of Polymerization -- 5.5 Conclusion -- References -- Chapter 6 Quantum Chemical Studies of RAFT Polymerization -- 6.1 Introduction -- 6.2 Methodology -- 6.2.1 Electronic Structure Calculations -- 6.2.2 Kinetics and Thermodynamics -- 6.2.3 Solvent Effects -- 6.2.4 Accuracy and Outstanding Challenges -- 6.3 Computational Modelling of RAFT Kinetics -- 6.3.1 Simplified Models for Theory and Experiment.

6.3.2 Side Reactions -- 6.3.3 Computational Model Predictions -- 6.3.4 Ab initio Kinetic Modelling -- 6.4 Structure-Reactivity Studies -- 6.4.1 Fundamental Aspects -- 6.4.2 Structure-Reactivity in Practical RAFT Systems -- 6.4.3 RAFT Agent Design -- 6.5 Outlook -- References -- Chapter 7 Mathematical Modelling of RAFT Polymerization -- 7.1 Introduction -- 7.2 Deterministic Modelling Techniques (DMTs) -- 7.2.1 Method of Moments (MM) -- 7.2.1.1 Homogeneous Systems -- 7.2.1.2 Heterogeneous Systems -- 7.2.2 Diffusion‐Controlled or CL‐Dependent Coefficients -- 7.2.3 Calculation of Full Molecular Weight Distributions -- 7.2.3.1 Explicit Integration Methods -- 7.2.3.2 Probability‐Generating Function -- 7.2.3.3 Calculations Using the Predici® Software -- 7.3 Stochastic Modelling Techniques (SMTs) -- 7.3.1 Monte Carlo -- 7.3.1.1 Homogeneous Systems -- 7.3.1.2 Heterogeneous Systems -- 7.4 Hybrid Methods -- 7.5 Specific or Novel Polymerization Processes -- 7.5.1 Semibatch Polymerization -- 7.5.2 Polymerizations in CSTRs/PFR -- 7.5.3 Branched Copolymerizations -- 7.5.4 Microwave‐Assisted (MA) RAFT Polymerization -- 7.6 Closing Remarks -- Acknowledgments -- References -- Chapter 8 Dithioesters in RAFT Polymerization -- 8.1 Introduction -- 8.2 Mechanism of RAFT Polymerization with Dithioester Mediators -- 8.2.1 Transfer Coefficients of Dithioesters -- 8.2.2 RAFT Equilibrium Coefficients with



Dithioesters -- 8.3 Choice of RAFT Agents -- 8.3.1 Aromatic Dithioesters (Z &amp -- equals -- Aryl or Heteroaryl) -- 8.3.2 Functional Aromatic Dithioesters (Z &amp -- equals -- Aryl or Heteroaryl) -- 8.3.3 Bis‐aromatic Dithioesters (Z &amp -- equals -- Aryl or Heteroaryl) -- 8.3.4 Aliphatic Dithioesters (Z &amp -- equals -- Alkyl or Aralkyl) -- 8.3.5 Bis‐aliphatic Dithioesters (Z &amp -- equals -- Alkyl or Aralkyl) -- 8.4 Synthesis of Dithioester RAFT Agents.

8.5 Monomers for Dithioester‐Mediated RAFT Polymerization -- 8.5.1 1,1‐Disubsituted Monomers -- 8.5.1.1 Methacrylates -- 8.5.1.2 Methacrylamides -- 8.5.1.3 Other 1,1‐Disubsituted Monomers -- 8.5.2 Monosubstituted MAMs -- 8.5.2.1 Acrylates -- 8.5.2.2 Acrylamides -- 8.5.2.3 Styrenics -- 8.5.2.4 Diene Monomers -- 8.5.3 1,2‐Disubstituted MAMs -- 8.5.4 Monosubstituted IAMs and LAMs -- 8.5.5 Monomers with Reactive Functionality -- 8.5.6 Macromonomers -- 8.6 Cyclopolymerization -- 8.7 Ring‐Opening Polymerization -- 8.8 RAFT Crosslinking Polymerization -- 8.9 RAFT Self‐condensing Vinyl Polymerization -- 8.10 RAFT‐Single‐Unit Monomer Insertion (RAFT‐SUMI) into Dithioesters -- 8.11 Dithioesters in Mechanism‐Transformation Processes -- 8.11.1 Ring‐Opening Polymerization (ROP) -- 8.11.2 Ring‐Opening Metathesis Polymerization (ROMP) -- 8.11.3 Atom Transfer Radical Polymerization (ATRP) -- 8.11.4 Nitroxide‐Mediated Polymerization (NMP) -- 8.12 Thermally Initiated RAFT Polymerization with Dithioesters -- 8.13 Photoinitiated RAFT with Dithioesters -- 8.14 Redox‐Initiated RAFT with Dithioesters -- 8.15 Reaction Conditions and Side Reactions of Dithioesters -- 8.16 RAFT Emulsion/Miniemulsion Polymerization Mediated by Dithioesters -- 8.17 Dithioester Group Removal/Transformation -- 8.17.1 Dithioester Group Removal by Reaction with Nucleophiles -- 8.17.2 Dithioester Group Removal by Radical‐Induced Reactions -- 8.17.2.1 Radical‐Induced Coupling/Disproportionation -- 8.17.2.2 Radical‐Induced Reduction -- 8.17.3 Dithioester Group Removal by Oxidation -- 8.17.4 Dithioester Group Removal by Thermolysis -- 8.17.5 Electrocyclic Reactions of Dithioesters -- 8.17.6 Boronic Acid Cross‐Coupling -- 8.17.7 Conclusions and Outlook -- Abbreviations -- References -- Chapter 9 Trithiocarbonates in RAFT Polymerization -- 9.1 Introduction.

9.2 Mechanism of RAFT Polymerization with Trithiocarbonate Mediators -- 9.2.1 Transfer Coefficients for Trithiocarbonates in RAFT Polymerization -- 9.2.2 RAFT Equilibrium Coefficients for Trithiocarbonates -- 9.3 Choice of Homolytic Leaving Group R for Trithiocarbonate RAFT Agents -- 9.3.1 Homolytic Leaving Group 'R' for 1,1‐Disubsituted MAMs -- 9.3.2 Homolytic Leaving Group 'R' for Monosubstituted MAMs -- 9.3.3 Homolytic Leaving Group 'R' for IAMs and LAMs -- 9.3.4 Macro‐leaving Group 'R' for Block Copolymer Synthesis -- 9.4 Choice of Activating Group 'Z' for Trithiocarbonate RAFT Agents -- 9.5 Symmetric Trithiocarbonates -- 9.5.1 Bis‐trithiocarbonates -- 9.6 Non‐symmetric Trithiocarbonates -- 9.7 Functional Trithiocarbonates -- 9.8 Synthesis of Trithiocarbonates -- 9.9 Polymer Syntheses with Trithiocarbonates -- 9.9.1 Methacrylates -- 9.9.2 Methacrylamides -- 9.9.3 Other 1,1‐Disubstituted Monomers -- 9.9.4 Acrylates -- 9.9.5 Acrylamides -- 9.9.6 Styrenics -- 9.9.7 Diene Monomers -- 9.9.8 Other Monosubstituted Monomers (MAMs, IAMs, LAMs), Vinyl Monomers -- 9.9.9 Monomers with Reactive Functionality -- 9.10 Macromonomers -- 9.11 Cyclopolymerization -- 9.12 Radical Ring‐Opening Polymerization -- 9.13 RAFT Crosslinking Polymerization -- 9.14 RAFT Self‐condensing Vinyl Polymerization -- 9.15 RAFT‐Single‐Unit Monomer Insertion (RAFT‐SUMI) into Trithiocarbonates -- 9.16 Trithiocarbonates in Mechanism Transformation Processes --



9.16.1 Ring‐Opening Polymerization (ROP) -- 9.16.2 Ring‐Opening Metathesis Polymerization (ROMP) -- 9.16.3 Ring‐Opening Opening Alkyne Metathesis Polymerization (ROAMP) -- 9.16.4 Cationic Polymerization -- 9.16.5 Anionic Polymerization -- 9.16.6 Nitroxide Mediated Polymerization (NMP) -- 9.16.7 Atom Transfer Radical Polymerization (ATRP) -- 9.17 Photoinitiated RAFT with Trithiocarbonates.

9.18 Redox‐Initiated RAFT with Trithiocarbonates.