1.

Record Nr.

UNINA9910551838603321

Autore

Kublitski Jonas

Titolo

Organic semiconductor devices for light detection / / Jonas Kublitski

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2022]

©2022

ISBN

9783030944643

9783030944636

Descrizione fisica

1 online resource (211 pages)

Collana

Springer Theses

Disciplina

681.25

Soggetti

Organic semiconductors

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Intro -- Supervisor's Foreword -- Abstract -- Acknowledgments -- Contents -- Symbols, Physical Constants and Acronyms -- Symbols -- Physical Constants -- Acronyms -- 1 Introduction -- 1.1 Detection of Electromagnetic Radiation: A Growing Demand -- 1.2 Challenges of the Current Technology -- 1.3 Organic Electronics and Organic Photodetectors -- 1.4 Challenges for OPDs -- 1.5 Outline of This Thesis -- References -- 2 Fundamentals of Light Detection -- 2.1 Radiometry -- 2.1.1 Radiometric Quantities -- 2.1.2 Black-Body Radiation -- 2.2 Inorganic Light Detecting Devices -- 2.2.1 Fundamentals of Inorganic Semiconductor Physics -- 2.2.2 From Radiation to Chemical Energy -- 2.2.3 From Chemical Energy to Electrical Energy -- 2.2.4 Interfaces Metal/Semiconductor -- 2.2.5 pn-Junction -- 2.2.6 Photoconductors for Light Detection -- 2.3 Figures of Merit of Photodetectors -- 2.3.1 Power Spectral Density Sx(f) -- 2.3.2 Noise Current langleinrangle -- 2.3.3 Responsivity mathcalR -- 2.3.4 Noise Equivalent Power NEP -- 2.3.5 Specific Detectivity D* -- 2.3.6 BLIP Limit for D* -- 2.3.7 Dynamic Range -- 2.3.8 Response Speed -- References -- 3 Organic Semiconductors for Light Detection -- 3.1 Organic Semiconductors -- 3.1.1 Molecular Properties -- 3.1.2 Solid State Physics of Organic Semiconductors -- 3.1.3 Traps in Organic Solids -- 3.2 Working Principle of Optoelectronic Devices -- 3.2.1 Donor-Acceptor Systems and Charge-Transfer States -- 3.2.2 Impact



of Charge-Transfer States on Optoelectronic Devices -- 3.2.3 From Light Absorption to Electric Output -- 3.2.4 Organic Photodetectors -- 3.2.5 Photomultiplication-Type OPDs -- References -- 4 Materials and Experimental Methods -- 4.1 Sample Preparation -- 4.2 Materials -- 4.2.1 Donors -- 4.2.2 Acceptors -- 4.2.3 Hole Transporting Layers -- 4.2.4 Electron Transporting Layers -- 4.2.5 Dopants.

4.3 Characterization Methods -- 4.3.1 Temperature-Dependent Electric Measurements -- 4.3.2 Current-Voltage Measurements -- 4.3.3 Temperature-Dependent Current-Voltage Measurements -- 4.3.4 Suns-VOC Measurements -- 4.3.5 External Quantum Efficiency Measurements -- 4.3.6 Sensitive External Quantum Efficiency Measurements -- 4.3.7 Noise Measurements -- 4.3.8 Impedance Spectroscopy -- 4.3.9 Transient Photocurrent Measurements -- 4.3.10 Spectroscopic Ellipsometry Measurements -- 4.4 Drift-Diffusion JV-Simulation -- References -- 5 Reverse Dark Current in Organic Photodetectors: Generation Paths in Fullerene Based Devices -- 5.1 Introduction -- 5.2 The Role of Dark Current on the Specific Detectivity -- 5.3 Device Optimization for Dark Current Studies -- 5.3.1 Contact Selectivity and Blocking Layers -- 5.3.2 Shunt Paths in OPDs -- 5.3.3 Device Structuring -- 5.4 Diode Saturation Current Generated via Charge-Transfer States -- 5.5 Traps as the Main Source of Reverse Dark Current in OPDs -- 5.6 Generation-Recombination Statistics Due to a Distribution … -- 5.6.1 Trap-Assisted JD Generation Model -- 5.6.2 Modeling Trap-Assisted JD Generation in OPDs -- 5.6.3 Ideality Factor in Trap-Assisted JD -- 5.6.4 Arrhenius Activation Energy of Trap States -- 5.6.5 The Impact of the Trap Distribution Characteristics  on JD -- 5.6.6 The Interplay Between CT States and Trap States -- 5.7 Conclusion -- References -- 6 Enhancing Sub-Bandgap External Quantum Efficiency by Photomultiplication in Narrowband Organic Near-Infrared Photodetectors -- 6.1 Introduction -- 6.2 Photomultiplication in ZnPc:C60 Devices -- 6.2.1 Enhancing the External Quantum Efficiency -- 6.2.2 Effect of Acceptor Concentration on Photomultiplication -- 6.2.3 The Role of Dark Current in PM-OPDs -- 6.2.4 Enhancement of Charge-Transfer State Response in PM-OPDs -- 6.2.5 Transient Photocurrent.

6.3 Dynamic Range of PM-OPDs -- 6.4 Conclusion -- References -- 7 Summary and Outlook -- 7.1 Summary -- 7.1.1 On the Origin of the Dark Current of Organic Photodetectors -- 7.1.2 Enhancing EQE via Photomultiplication in Organic Photodetectors -- 7.1.3 Related Topics Investigated Alongside with this Thesis (Not Shown) -- 7.2 Outlook -- 7.2.1 Open Research Topics for Photovoltaic-Type OPDs -- 7.2.2 Open Research Topics for Photomultiplication-Type OPDs -- 7.2.3 Open Research Topics for OPDs in General -- References -- Appendix  Impedance Spectroscopy in Organic Blends -- Appendix  Curriculum Vitae -- Professional Experience -- Academic Projects -- Academic Education with Degree -- Non-academic Education -- Publications -- Attended Conferences -- Prizes and Awards -- Funding Received So Far -- Supervising and Mentoring Activities -- Languages -- Knowledge Area -- Referees.