|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910544845303321 |
|
|
Autore |
Belous A. I (Anatoliĭ Ivanovich) |
|
|
Titolo |
The art and science of microelectronic circuit design / / A. I. Belous, Vitali Saladukha |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (445 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1: Standard Characteristics of Digital Microcircuits -- 1.1 Structure of Digital Microciruits -- 1.1.1 General Structure of Digital Microcircuits -- 1.1.2 Architecture of Internal Cells of Digital Microcircuits -- 1.1.3 Architecture of Digital Mirocircuit Matching Elements -- 1.2 System of Main Parameters and Chracteristics of Digital Microcircuits -- 1.2.1 Functional Parameters of Digital Microcircuits -- 1.2.2 Electical Parameters of Digital Microcircuits -- 1.2.3 Dynamic Parameters of Digital Microcircuits -- 1.3 Schematic Implementation of Digital Microcircuits -- 1.3.1 Power Characteristics of Standard Logic Cells of Digital Microcircuits -- 1.3.2 Schematic Implementation of Standard Digital Microcircuits -- 1.3.3 Techniques of Digital Microcircuits Element Base Selection -- 1.4 Impact of Destabilizing Factors on Serviceability of Digital Microcircuits -- 1.4.1 Immunity of Digital Microcircuits to Electrostatic Discharge -- 1.4.2 Microcircuits Overload Tolerance -- 1.4.3 Dependence of Electrical Characteristics of Digital Microcircuits Upon Operational Modes -- 1.4.4 Immunity of Digital Microcircuits to the Impact Produced by Interferences -- 1.5 Parasitic Elements and Effects in Digital Microcircuits -- 1.5.1 Parasitic Transistor Elements Inside Digital Microcircuit Dice -- 1.5.2 Miller´s Effect -- 1.5.3 Latch-Up Effect -- References -- Chapter 2: Schematic Solutions of Digital CMOS Microcircuits -- 2.1 Standard Logic Cells of Digital CMOS Microcircuits -- 2.1.1 Static CMOS Logic Cells -- 2.1.2 |
|
|
|
|
|
|
|
|
|
Standard LC of Dynamic CMOS Logic -- 2.2 Memory Elements of the Digital CMOS Integrated Circuits -- 2.2.1 Memory Elements, Clocked by the Level of the Synchrosignal -- 2.2.2 Memory Elements, Clocked by the Synchrosignal Edge -- References. |
Chapter 3: Schematic Technical Solutions of the Bipolar Integrated Circuits -- 3.1 Digital Integrated Circuits on the Bipolar Transistors with the Schottky Diodes -- 3.1.1 Basic TTLS Logic Elements of Digital Integrated Circuits -- 3.1.2 Basic Logic Elements of Schottky Transistor Logic -- 3.1.3 Basic Logic Elements of the Integrated Schottky Logic -- 3.1.4 Base Logic Elements of the Diode-Transistor Logic with Schottky Diodes -- 3.2 Memory Elements of TTLS Integrated Circuits -- 3.2.1 Memory Elements, Synchrosignal Edge Cycled -- 3.2.2 Memory Elements, Cycled by the Level of the Synchrosignal -- 3.3 Schematics of the Input Matching Elements of the TTLS Integrated Circuits -- 3.3.1 Input Matching TTLS Elements of Integrated Circuits with the standard TTL input levels -- 3.3.2 Input ME TTLS of Integrated Circuits with the Enhanced Load Capacitance -- 3.3.3 Input ME TTLS of the Integrated Circuits with the Paraphrase Outputs -- 3.3.4 Input ME TTLS Integrated Circuits with Memory -- 3.3.5 Input BE TTLS of Integrated Circuits with the Enhanced Noise Immunity -- 3.3.6 Input Matching Element with Conversion of the Signal Levels -- 3.3.7 Protection Diagrams of the Input ME TTLS Integrated Circuits -- 3.4 Schematics of the Output Matching Elements of TTLS Integrated Circuits -- 3.4.1 Output ME TTLS of Integrated Circuits with Standard TTL Output Levels -- 3.4.2 Output ME of TTLS Integrated Circuits with Memory -- 3.4.3 Output ME of TTLS Integrated Circuits with Conversion of signal levels -- 3.4.4 Schematics of the Protection Circuits of the Output ME of TTLS Integrated Circuits -- 3.5 Digital Integrated Circuits on the Basis of the Integrated Injection Logic -- 3.5.1 Varieties of the Basic Elements of the I2L Integrated Circuits -- 3.5.2 Memory Elements of I2L Integrated Circuits. |
3.5.3 Schematics of the Input Matching Elements of the I2L Integrated Circuits -- 3.5.4 Protection of the I2L Pins of the Integrated Circuits from Overvoltage and Static Electricity -- References -- Chapter 4: Circuit Engineering of Bi-CMOS IC -- 4.1 Basic Logic Elements of Bi-CMOS IC -- 4.2 Bi-CMOS IC Memory Elements -- 4.3 Circuit Engineering of Bi-CMOS IC Input Matching Components -- 4.3.1 Input MC of Bi-CMOS IC with Signal Level Conversion -- 4.3.2 Input MC of Bi-CMOS IC with Increased Load Capacity -- 4.3.3 Input MC of Bi-CMOS IC with Paraphase Outputs -- 4.3.4 Input MC of Bi-CMOS IC with Increased Noise Immunity -- 4.3.5 Input MC of Bi-CMOS Memory IC -- 4.3.6 Circuit Engineering of Input MC of Bi-CMOS IC Protection -- 4.4 Circuit Engineering of Bi-CMOS IC Matching Output Components -- 4.4.1 Output MC of Bi-CMOS IC with the Formation of CMOS Output Levels -- 4.4.2 Output MC of Bi-CMOS ICs with the Formation of TTL Output Levels -- 4.4.3 Output MC of Bi-CMOS IC with the Formation of ECL Output Levels -- 4.4.4 Output MC BI-CMOS Memory ICs -- 4.4.5 Circuit Engineering of the Output MC BI-CMOS IC Protection Circuits -- References -- Chapter 5: Structure and Specific Features of Design Libraries for Submicron Microcircuits -- 5.1 Development Process Flow and Standard Structure of a Process Design Kit (PDK) -- 5.2 Terms and Definitions Used to Describe PDK Components -- 5.3 PDK Standardization -- 5.4 Mixed Analog/Digital Microcircuit Design Flow -- 5.5 Summarized Information Model of Mixed Analog-Digital IC Design -- 5.6 Specifying Basic PDK Components and Standard Elements List -- 5.7 Development Features of Digital Libraries for Designing ASICs with Submicron Design Rules -- 5.8 Structural and Circuit-Level Features of Designing Basic Cells for Submicron Microcircuits Library -- 5.8.1 Voltage Level Shifters -- 5.8.2 Power Gating Circuits. |
|
|
|
|
|
|
|
|
5.8.3 Isolation Library Cells for Submicron Microcircuits -- 5.8.4 ``Always-on´´ Buffers -- 5.9 Standard PDK Data Files -- 5.10 Standard PDK Current Source Models (CCS) -- 5.11 Methods and Examples of Standard IC Design Tools Adaptation to 90, 65, and 45 Nm Microcircuit Design -- 5.11.1 Synopsys Tutorial (Educational) Design Kit: Capabilities, Applications, and Prospects -- 5.11.2 Synopsys EDK Overview -- 5.11.3 Synopsys Digital Standard Cell Library -- 5.11.4 I/O Standard Cell Library -- 5.11.5 Standard Set of PDK Memory Modules -- 5.11.6 Phase-Locked Loop (PLL) -- 5.11.7 Geography of EDK Applications and Prospects -- 5.12 Contents of Educational Design Kits Provided by IMEC -- References -- Chapter 6: Digital IC and System-on-Chip Design Flows -- 6.1 Choosing the IC Design Flow -- 6.2 System Design Stage -- 6.3 Functional Design Stage (Fig. 6.3) -- 6.4 Logic Design Stage -- 6.5 Physical (Topological) Design Stage -- 6.6 Stage of Physical Verification and Preparation for Production (Fig. 6.6) -- 6.7 Project Certification -- 6.8 SoC Design Flow -- 6.8.1 Trends in the Development of Design Tools -- 6.8.2 SoC Design Methodology -- 6.8.3 SoC Design Flow -- 6.8.4 SoC System Design -- 6.8.5 CAD Software for the System Level -- 6.9 Practical Example of the System-on-Chip Simulation -- 6.9.1 Standard Design Flow of the SoC of Cadence Company -- 6.9.2 Description of the Simulation and Verification Environment -- 6.9.3 Project in the Cadence Incisive Environment -- References -- Chapter 7: Fundamentals of CMOS Microcircuits Logic Design with Reduced Power Consumption -- 7.1 Basics of Low-Power-Driven Logic Synthesis of CMOS Microcircuits -- 7.2 Identification of Power Dissipation Sources in CMOS Microcircuits -- 7.3 Probabilistic Evaluation of Optimization Options by Predicted Switching Activity of IC Nodes. |
7.4 Selection of Element Basis for Low-Power CMOS Microcircuit Design -- 7.5 Logic Synthesis of CMOS Microcircuits in the Basis of Library Elements -- 7.6 Power Dissipation-Driven Optimization of Two-Level Logic Circuits -- 7.7 Selection of Basic Gates for Technology-Independent Functional Circuit -- 7.8 Optimization of Multilevel Logic Circuits of Multi-input Gates -- 7.9 Optimization of Multilevel Logic Circuits of Double Input Gates -- 7.10 Technology Mapping -- 7.11 Estimation of Power Consumption of Designed CMOS Microcircuits at Logic and Circuitry Levels -- 7.12 Low-Power CMOS Microcircuit Design Technology with ELS Package -- 7.13 ELS Software Package Architecture -- 7.14 Functional Capabilities of ELS Software Package -- References -- Chapter 8: Fundamentals of Building a Quality Management System for Manufacturing Submicron Integrated Circuits Based on Test ... -- 8.1 Methodology of the Organization of Technological Test Control in the Process of Design and Production of Microelectronic P... -- 8.1.1 Place and Role of Semiconductor Test Structures in the Process of Manufacturing Integrated Circuits -- 8.1.2 Classification of Technological Test Structures -- 8.1.3 Methods of Placing Test Structures on Semiconductor Wafers -- 8.2 Principles of Control of the Process of Manufacturing Chips Using Test Structures -- 8.2.1 Assessment of the Quality of the Process Based on the Method of Interoperative Control of Wafers -- 8.2.2 Typical Composition of the Test Module for Monitoring Production Processes -- 8.2.3 Typical Composition of Test Structures for Quality Control of Submicron ICs -- 8.2.4 Statistical Processing of Measurement Results of Test Structures -- 8.3 Forecasting the IC Yield Based on the Results of the Test Control -- 8.3.1 Features of Simulation of the IC Yield. |
8.3.2 Model of Postoperative Separation of Defects in the Technological Process of IC Manufacturing. |
|
|
|
|
|
| |