1.

Record Nr.

UNINA9910523782803321

Autore

Bernstein Herbert <1946->

Titolo

Measuring electronics and sensors : basics of measurement technology, sensors, analog and digital signal processing / / Herbert Bernstein

Pubbl/distr/stampa

Wiesbaden, Germany : , : Springer, , [2022]

©2022

ISBN

3-658-35067-9

Descrizione fisica

1 online resource (352 pages)

Disciplina

621.381548

Soggetti

Electronic measurements

Measuring instruments

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- 1: Introduction to Sensor Technology and Electronic Measurement Technology -- 1.1  Sensor Types -- 1.1.1  Standard Sensors -- 1.1.2  Basic Metrological Concepts -- 1.1.3  Analog and Digital Measuring Instruments -- 1.1.4  Current and Voltage -- 1.1.5  Resistors -- 1.2  Calibration of Measuring and Test Equipment -- 1.3  Analog and Digital Data Acquisition -- 1.3.1  Structure of an Analog Electrode -- 1.3.2  Structure of a Digital Measurement Chain -- 1.3.3  Acquisition and Processing of Measurement Data -- 1.3.4  Control, Regulation, and Visualization -- 1.4  Measurement Error -- 1.4.1  Types of Errors -- 1.4.2  Sources of Error -- 1.4.3  Influence Errors -- 1.4.4  Error Propagation -- 1.4.5  Selection Criteria for Measuring Instruments -- 2: Components of the Electronic Data Acquisition -- 2.1  Analog Amplifier Families -- 2.1.1  Internal Circuit Design of Operational Amplifiers -- 2.1.2  Operating Modes of an Operational Amplifier -- 2.1.3  Transmission Characteristics of Operational Amplifiers -- 2.1.4  Inverting Mode -- 2.1.5  Non-inverting Operation -- 2.1.6  Voltage-Dependent Current Feedback -- 2.1.7  Current Dependent Voltage Feedback -- 2.1.8  Current Dependent Current Feedback -- 2.2  Linear and Non-linear Amplifier Circuits -- 2.2.1  Adder or Totalizer -- 2.2.2  Operational Amplifier as an Integrator -- 2.2.3  Differentiator with Operational Amplifier -- 2.2.4  Differential Amplifier or Subtractor -- 2.2.5  



Instrumentation Amplifier -- 2.2.6  Voltage and Current Measurement -- 2.3  Comparator and Schmitt Trigger -- 2.3.1  Simple Voltage Comparator -- 2.3.2  Voltage Comparator in Saturated Amplifier Mode -- 2.3.3  Window Comparator -- 2.3.4  Three-Point Comparator -- 2.3.5  Schmitt Trigger -- 2.3.6  Schmitt Trigger in Non-saturated Mode -- 2.3.7  Comparator with Tilting Behavior -- 2.4  Measuring Bridges.

2.4.1  Unloaded Voltage Divider -- 2.4.2  Loaded Voltage Divider -- 2.4.3  Bridge Circuit -- 2.4.4  Simple Capacitance Measuring Bridge -- 2.4.5  Vienna and Vienna-Robinson Bridge -- 2.4.6  Maxwell Bridge -- 2.4.7  Schering Bridge -- 2.4.8  Maxwell-Vienna Bridge -- 2.4.9  Frequency-Independent Maxwell Bridge -- 2.5  Analog Switch -- 2.5.1  Switch Functions of the Analog Switches -- 2.5.2  Operational Amplifier with Digital Control -- 2.5.3  Sample &amp -- Hold Circuits -- 2.6  Analog-to-Digital and Digital-to-Analog Converters -- 2.6.1  The Structure of a Data Collection System -- 2.6.2  Data Acquisition Without a Sample and Hold Unit -- 2.6.3  Time-Division Multiplexed Data Acquisition with Sample and Hold Unit -- 2.6.4  Simultaneous Acquisition of Measurement Data with a Sample and Hold Unit -- 2.6.5  Antialiazing Filter -- 2.6.6  Systems for Signal Sampling -- 2.6.7  Theorem for Signal Sampling -- 2.7  AD- and DA-Converter -- 2.7.1  Natural Binary Code -- 2.7.2  Complementary Binary Code -- 2.7.3  Codes for AD and DA Converters -- 2.7.4  BCD Coding -- 2.7.5  Specifications of Data Converters -- 2.7.6  Relative Accuracy of Transducer Systems -- 2.7.7  Absolute Accuracy of Transducers -- 2.8  Digital to Analog Converter -- 2.8.1  Transfer Function -- 2.8.2  Structure and Function of a DA Converter -- 2.8.3  R2R-DA Converter -- 2.8.4  DA-Converter with External Resistors -- 2.9  Analog to Digital Converter -- 2.9.1  AD Converter According to the Counting Method -- 2.9.2  AD Converter with Overshoot Control -- 2.9.3  AD Converter with Step-by-Step Approximation -- 2.9.4  Single-Slope AD Converter -- 2.9.5  Dual Slope AD Converter -- 2.9.6  Voltage to Frequency Converter -- 3: Temperature Sensors -- 3.1  Basic Information About Temperature Measurement -- 3.1.1  Temperature-Dependent Effects -- 3.1.2  Temperature-Dependent Resistors.

3.1.3  NTC Resistors or Thermistors -- 3.1.4  Data, Designs, and Technology of Thermistors -- 3.1.5  Linearization of Thermistor Curves -- 3.1.6  Amplifying Circuits for Linearized Thermistors -- 3.1.7  PTC Resistors -- 3.1.8  Protective Circuits with PTC Thermistors -- 3.1.9  Temperature Switches from −10 °C to +100 °C -- 3.1.10  Temperature Switch with Sensor Monitoring -- 3.2  LED Thermometer -- 3.2.1  Integrated Converter ICL7106 and ICL7107 -- 3.2.1.1  Automatic Zero Adjustment -- 3.2.1.2  Signal Integration -- 3.2.1.3  Reference Integration or Deintegration -- 3.2.1.4  Differential Input -- 3.2.1.5  Differential Reference Input -- 3.2.1.6  "ANALOG COMMON" -- 3.2.1.7  Test -- 3.2.2  External Components of ICL7106 and ICL7107 -- 3.2.2.1  Integration Resistance RI -- 3.2.2.2  Integration Capacitor -- 3.2.2.3  "AUTO-ZERO" Capacitor CZ -- 3.2.2.4  Reference Capacitor Cref -- 3.2.2.5  Components of the Oscillator -- 3.2.2.6  Reference Voltage -- 3.2.2.7  Operating Voltages of the ICL7107 -- 3.2.3  Integrating AD Converters with the ICL7106 and ICL7107 -- 3.3  Thermocouples -- 3.3.1  Thermoelectric Effect -- 3.3.1.1  Fe-CuNi -- 3.3.1.2  Cu-CuNi -- 3.3.1.3  NiCr-Ni -- 3.3.1.4  PtRh10-Pt -- 3.3.1.5  PtRh30-PtRh6 -- 3.3.2  Measurements with Thermocouples -- 3.3.3  Amplifier for Thermocouples -- 3.4  Resistance Thermometers with Pt100 or Ni100 -- 3.4.1  Pt100 Resistance Thermometer -- 3.4.2  Ni100 Resistance Thermometer -- 3.4.3  Silicon Temperature Sensor as Pt100 Replacement -- 3.4.4  Connection of a Resistance Thermometer -- 3.4.5  Avoidance of Electromagnetic Susceptibility --



3.4.6  Ground Loops, Earthing and Shielded Cables -- 3.4.7  Heat Flow Sensor -- 3.5  Measuring Mechanical Quantities with Temperature Sensors -- 3.5.1  Level Measurement -- 3.5.2  Measurement of Flow Velocity -- 3.5.3  Microbridge Airflow Sensors.

3.5.4  Hot Film Air Mass Sensor -- 3.5.5  Hot-Wire Air Mass Sensor -- 4: Optical Sensors -- 4.1  Properties and Design -- 4.1.1  Luminous Sensitivity -- 4.1.2  Photodiode Technology -- 4.1.3  Applications of Photodiodes -- 4.1.4  Photoresistance -- 4.1.5  Measuring Circuit with a Photoresistor -- 4.1.6  Twilight Switch -- 4.1.7  Phototransistor -- 4.1.8  Automatic Garage Lighting with a Phototransistor -- 4.1.9  Photoelectric Cell -- 4.2  Active Optoelectronics -- 4.2.1  Emitter Components -- 4.2.2  Laser Diodes (Semiconductor Lasers) -- 4.2.3  Light-Emitting Diodes -- 4.3  Optocoupler -- 4.4  Light Barriers and Optoelectronic Scanning Systems -- 4.4.1  Through-Beam Sensors -- 4.4.2  Special Forms of Through-Beam Sensors -- 4.4.3  Reflection Light Barriers -- 4.4.4  Retro-reflective Sensors -- 4.4.5  Detection of Shiny Objects -- 4.4.6  Photoelectric Proximity Switches with Background Suppression -- 4.4.7  Drill Breakage Control Using Light Barrier -- 4.4.8  Optical Distance Measurement -- 4.5  Optical Angle of Rotation and Position Detection -- 4.5.1  Absolute Rotary Encoder -- 4.5.2  Fork Sensors -- 4.5.3  Incremental Encoders -- 4.5.4  Signal Evaluation -- 5: Humidity Sensors -- 5.1  Physical Measurement Methods -- 5.1.1  Appropriate Measurement Methods -- 5.1.2  Methods of Moisture Content Determination -- 5.1.3  Indirect Measurement Methods -- 5.1.4  Laboratory Measurement Procedures of Higher Accuracy -- 5.2  Physical Relationships -- 5.2.1  Definition of the Water Vapor Partial Pressure -- 5.2.2  Dew Point -- 5.2.3  Relative Humidity in Gases -- 5.2.4  Relative Humidity in Liquids -- 5.2.5  Structure and Operation of an Alumina Humidity Sensor -- 5.2.6  Use of Alumina Humidity Sensors -- 5.2.7  Temperature and Pressure Behavior -- 5.3  Realization of Humidity Measurement -- 5.3.1  Simple Measuring Circuit with Humidity Sensor.

5.3.2  Humidity Dependent Control -- Index.