1.

Record Nr.

UNINA9910522999303321

Autore

Haller Klaus <1939-2011, >

Titolo

Managing AI in the enterprise : succeeding with AI projects and MLops to build sustainable AI organizations / / Klaus Haller

Pubbl/distr/stampa

New York, New York : , : Apress Media LLC, , [2022]

©2022

ISBN

1-4842-7824-0

Descrizione fisica

1 online resource (223 pages)

Disciplina

658.0563

Soggetti

Business - Data processing

Project management - Technological innovations

Artificial intelligence - Industrial applications

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

1. Why Organizations Invest in AI -- 2. Structuring and Delivering AI Projects -- 3. Quality Assurance in and for AI -- 4. Ethics, Regulations, and Explainability -- 5. Building an AI Delivery Organization -- 6. AI & Data Management Architectures -- 7. Securing & Protecting AI Environments -- 8. Looking Forward.

Sommario/riassunto

Delivering AI projects and building an AI organization are two big challenges for enterprises. They determine whether companies succeed or fail in establishing AI and integrating AI into their digital transformation. This book addresses both challenges by bringing together organizational and service design concepts, project management, and testing and quality assurance. It covers crucial, often-overlooked topics such as MLOps, IT risk, security and compliance, and AI ethics. In particular, the book shows how to shape AI projects and the capabilities of an AI line organization in an enterprise. It elaborates critical deliverables and milestones, helping you turn your vision into a corporate reality by efficiently managing and setting goals for data scientists, data engineers, and other IT specialists. For those new to AI or AI in an enterprise setting you will find this book a systematic introduction to the field. You will get the necessary know-how to collaborate with and lead AI specialists and



guide them to success. Time-pressured readers will benefit from self-contained sections explaining key topics and providing illustrations for fostering discussions in their next team, project, or management meeting. Reading this book helps you to better sell the business benefits from your AI initiatives and build your skills around scoping and delivering AI projects. You will be better able to work through critical aspects such as quality assurance, security, and ethics when building AI solutions in your organization. What You Will Learn Clarify the benefits of your AI initiatives and sell them to senior managers Scope and manage AI projects in your organization Set up quality assurance and testing for AI models and their integration in complex software solutions Shape and manage an AI delivery organization, thereby mastering ML Ops Understand and formulate requirements for the underlying data management infrastructure Handle AI-related IT security, compliance, and risk topics and understand relevant AI ethics aspects Who This Book Is For Experienced IT managers managing data scientists or who want to get involved in managing AI projects, data scientists and other tech professionals who want to progress toward taking on leadership roles in their organization's AI initiatives and who aim to structure AI projects and AI organizations, any line manager and project manager involved in AI projects or in collaborating with AI teams.



2.

Record Nr.

UNINA9910691265503321

Titolo

DOD personnel [[electronic resource] ] : improvements made to housing allowance rate-setting process : report to congressional requesters / / United States General Accounting Office

Pubbl/distr/stampa

[Washington, D.C.] : , : The Office, , [2001]

Soggetti

Housing - United States

United States Armed Forces Barracks and quarters

United States Armed Forces Pay, allowances, etc

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"April 2001."

"GAO-01-508."

Paper version available from the General Accounting Office.

Title from title screen.

Nota di bibliografia

Includes bibliographical references.



3.

Record Nr.

UNINA9910823511303321

Autore

Anthon Kaye Erika Cheska

Titolo

Arbeiten im Newsroom : Wie wirkt sich Konvergenz auf Journalisten aus? / / Kaye Erika Cheska Anthon

Pubbl/distr/stampa

Hamburg, [Germany] : , : Diplomica Verlag, , 2015

©2015

ISBN

3-95934-292-6

Descrizione fisica

1 online resource (100 p.)

Disciplina

070.4068

Soggetti

Journalism - Management

Mass media

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Arbeiten im Newsroom: Wie wirkt sich Konvergenz auf Journalisten aus?; Management Summary; Inhaltsverzeichnis; Vorwort; Glossar | Abkürzungsverzeichnis; 1 Ausgangslage | Situations- und Problemanalyse; 1.1 Relevanz des Themas; 1.2 Aktualität des Themas; 1.3 Problemstellung | Kontroverse; 1.4 Abgrenzungen zu bestehenden Arbeiten | Forschungslücken; 2 Zielsetzungen | Inhaltliche Abgrenzung; 2.1 Zielsetzung der Fallstudie; 2.2 Angrenzende Fragen | Inhaltliche Abgrenzung; 2.3 Forschungsfrage | Fragestellung; 3 Theoretischer Teil; 3.1 Kommunikationsforschung; 3.2 Meso-Ebene | Organisation

3.2.1 Wandel im Journalismus | Wandel der Medien3.2.2 Rahmenbedingungen des Medienwandels; 3.2.3 Einflussfaktoren auf die Medienhäuser; 3.2.4 Organisatorische Konsequenzen; 3.2.5 Redaktionsforschung; 3.2.6 Medienkonvergenz; 3.2.7 Newsroom | Crossmediales Arbeiten; 3.3 Fluktuation aus Arbeits- und Organisationspsychologischer Sicht; 3.3.1 Gravitation | Sozialisation; 3.3.2 Wirkungen organisationaler Sozialisation; 3.4 Mikro-Ebene | Journalist; 3.4.1 Journalist - ein Traumberuf?; 3.4.2 Soziodemografische Merkmale; 3.4.3 Journalisten | Sozialer Raum; 3.4.4 Kompetenzen

3.4.5 Journalistisches Feld3.4.6 Redaktionelle Arbeitsbedingungen; 3.5 Fazit aus der Theorie; 4 Methodische Vorgehensweise; 4.1 Quantitative Umfrage; 4.1.1 Vorgehen | Datenerhebung; 4.1.2 Aufbau des



Fragebogens; 4.1.3 Rücklauf der Fragebogen; 4.1.4 Vorgehen | Datenauswertung; 4.2 Qualitative Umfrage; 4.2.1 Vorgehen | Datenerhebung; 4.2.2 Interviewpartner; 4.2.3 Aufbau des Interview-Leitfadens; 4.2.4 Pre-Test; 4.2.5 Vorgehen | Datenaufbereitung | Datenauswertung; 5 Praktischer Teil; 5.1 Newsroom der Blick-Gruppe; 5.1.1 Blick-Kanäle; 5.1.2 Newsroom-Organisation; 5.2 Die Fallstudie