|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910522984903321 |
|
|
Titolo |
Ocean wave energy systems : hydrodynamics, power takeoff and control systems / / Abdus Samad [and three others], editors |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, Switzerland : , : Springer, , [2022] |
|
℗♭2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (585 pages) |
|
|
|
|
|
|
Collana |
|
Ocean engineering & oceanography ; ; 14 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Contents -- Contributors -- 1 Wave Energy Potential -- 1.1 World Energy Outlook -- 1.2 Ocean Energy -- 1.3 Environmental Impacts -- 1.4 Tidal Datum -- 1.5 Importance of Wave Energy -- 1.6 Wave Power Potential -- 1.6.1 Methods of Evaluation -- 1.6.2 Estimated Wave Power Potential -- 1.7 Wave Energy Map for INDIA -- References -- 2 Wave Energy Convertors -- 2.1 General -- 2.2 Harnessing of Wave Energy -- 2.3 Conversion Process -- 2.4 Wave Energy Devices -- 2.5 Wave Energy Developments and Activities -- 2.5.1 General -- 2.5.2 Shoreline Wave Energy System -- 2.5.3 Near Shore Wave Energy System -- 2.5.4 Offshore Wave Energy Systems -- 2.6 Onshore/Nearshore OWC Wave Energy Devices -- 2.7 Offshore OWC Wave Energy Devices -- 2.8 Special Types of Breakwaters with WEC -- 2.9 Summary -- References -- 3 Direct Absorber for Wave Energy Conversion -- 3.1 Introduction -- 3.1.1 Wave Energy Physics and Resource -- 3.2 Theoretical Background and Governing Equations -- 3.2.1 Linear Wave Theory of Ocean Surface (LWT) -- 3.2.2 Dispersion Relation -- 3.2.3 Energy in Water Wave -- 3.2.4 Wave Energy Spectrum -- 3.2.5 Forces on Floating Bodies -- 3.3 Wave Energy Conversion Systems -- 3.3.1 Attenuator -- 3.3.2 Oscillating Wave Surge Converter -- 3.3.3 Oscillating Water Column -- 3.3.4 Overtopping Device -- 3.3.5 Submerged Pressure -- 3.3.6 Point Absorber -- 3.4 Conclusion -- References -- 4 Development of Oscillating Water Column and Wave Overtopping-Wave Energy |
|
|
|
|
|
|
|
|
|
Converters in Europe Over the Years -- 4.1 The Importance of Wave Energy Resources Utilisation -- 4.2 A Brief Introduction to Wave Energy Harvesting Mechanism -- 4.3 Oscillating Water Column (OWC) Type Wave Energy Converter -- 4.3.1 General Introduction of OWC -- 4.3.2 Working Principle and Design Analysis of OWC -- 4.4 Oscillating Water Column Type WEC Projects Developments History. |
4.4.1 Land Installed Marine Power Energy Transmitter (LIMPET) -- 4.4.2 Pico Power Plant -- 4.4.3 Mutriku Wave Energy Plant -- 4.4.4 Resonant Wave Energy Converter (REWEC) or U-OWC -- 4.4.5 Siadar Wave Power Project -- 4.4.6 Floating OWC Development -- 4.5 Brief Summary of Wave Overtopping Devices' Development Over the years -- 4.5.1 General Introduction to Wave Overtopping Mechanism -- 4.5.2 Wave Loadings Analysis and Development of Sea-Wave Slot-Cone Generator (SSG) -- 4.5.3 Overtopping BReakwater for Energy Conversion (OBREC) Development -- References -- 5 Performance Characteristics of an OWC in Regular and Random Waves -- 5.1 Introduction -- 5.2 Experimental Investigations -- 5.2.1 OWC Model -- 5.2.2 Experimental Program -- 5.2.3 Harbour Walls in OWC -- 5.2.4 Wave Characteristics for the Study -- 5.2.5 Hydrodynamic Factors -- 5.3 Results and Discussion -- 5.3.1 Regular Wave Tests -- 5.3.2 Random Waves -- 5.3.3 OWC with Inclined Harbour Walls in Regular and Random Wave Fields -- 5.4 Summary and Conclusions -- References -- 6 Wave Induced Pressures and Forces on an OWC Device -- 6.1 Introduction -- 6.2 Literature Review -- 6.3 Experimental Investigation -- 6.3.1 Test Facility -- 6.3.2 Test Model and Experimental Set-Up -- 6.3.3 Instrumentation -- 6.3.4 Wave Characteristics -- 6.4 Hydrodynamic Parameters -- 6.5 Results and Discussion -- 6.5.1 Time Histories of Measured Signatures -- 6.5.2 Pressure Distribution in Front of the Lip Wall -- 6.5.3 Pressure Distribution at the Rear Wall of OWC Device -- 6.5.4 Air Pressure Inside the OWC Caisson -- 6.5.5 Horizontal Wave Force -- 6.5.6 Vertical Wave Force -- 6.5.7 Comparison of Measured and Estimated Horizontal Wave Force -- 6.5.8 Total Horizontal and Vertical Wave Forces Due to Random Waves -- 6.6 Summary and Conclusions -- References -- 7 Hydrodynamic Performance Characteristics of U-OWC Devices. |
7.1 Introduction -- 7.2 Experimental Set-Up -- 7.2.1 General -- 7.2.2 Details of the Models and Test Set-Up -- 7.2.3 Test Facility -- 7.2.4 Experimental Procedure -- 7.3 Results and Discussion -- 7.3.1 Spectral Width Parameter -- 7.3.2 Dynamic Pressures -- 7.3.3 Energy Efficiency -- 7.3.4 Air Pressure Variation -- 7.3.5 Phase Difference -- 7.3.6 Wave Amplification -- 7.4 Conclusions -- References -- 8 CFD Modelling of OWC Devices for Wave Energy Harnessing -- 8.1 Introduction -- 8.2 The Numerical Experiment -- 8.2.1 Computational Domain -- 8.2.2 Mesh -- 8.2.3 Boundary Conditions -- 8.3 Governing Equations -- 8.3.1 Pressure-Based Solver -- 8.3.2 Pressure-Velocity Coupling -- 8.3.3 Solution Control Parameters -- 8.4 Under-Relaxation Factors -- 8.4.1 Spatial Discretization of Equations -- 8.4.2 Reconstruction of Gradients -- 8.4.3 Time Discretization -- 8.5 Multiphase Flow -- 8.5.1 The Volume of Fluid (VOF) -- 8.6 Explicit Scheme -- 8.7 Implicit Scheme -- 8.7.1 Interpolation Near the Water-air Interface -- 8.7.2 Wave Generation -- 8.7.3 Dynamic Mesh -- 8.8 Dynamic Mesh Update -- 8.9 Elastic Smoothing Method -- 8.9.1 Open Channel Boundary Condition -- 8.10 PTO System and Configuration of the Porous Medium Region -- 8.11 Simulation, Data Saving, and Post-Processing -- 8.12 Conclusions -- References -- 9 Numerical Modelling Techniques for Wave Energy Converters in Arrays -- 9.1 Introduction -- 9.2 Review of Hydrodynamic Modelling of WEC Arrays -- 9.2.1 Point Absorber Method -- 9.2.2 Plane-Wave Method -- 9.2.3 Multiple Scattering -- |
|
|
|
|
|
|
|
9.2.4 Direct Matrix Method -- 9.2.5 Geographical Scale Studies -- 9.3 Boundary Element Methods -- 9.3.1 Problem Definition -- 9.3.2 Mathematical Formulation -- 9.3.3 Generated Power and Interaction Factor -- 9.3.4 Wave Disturbance Under Multi-Directional Sea -- 9.4 Verification of the Numerical Model. |
9.4.1 Performance of Arrays -- 9.5 WEC Array Modelling by Ocean Scale Numerical Models -- 9.5.1 Numerical Model Set-Up -- 9.5.2 Predictions Without Energy Extraction -- 9.5.3 Implementation of Energy Extraction -- 9.6 Concluding Remarks -- References -- 10 Hydrodynamic Performance of an Array of OWC Devices Integrated with Breakwater -- 10.1 Introduction -- 10.2 Experimental Investigation -- 10.2.1 Test Facility -- 10.2.2 Data Acquisition Sensors -- 10.2.3 Test Model and Experimental Setup -- 10.2.4 Instrumentation -- 10.2.5 Wave Characteristics and Hydrodynamic Parameters -- 10.3 Results and Discussion -- 10.3.1 Time Histories -- 10.3.2 Effect of Wave Characteristics -- 10.3.3 Wave Interaction Between Devices -- 10.3.4 Effect of Spacing -- 10.3.5 Performance of OWC in an Array -- 10.3.6 Total Performance vs. Average Performance -- 10.3.7 Reflection Nature of OWCBW System -- 10.4 Hydrodynamic Performance of OWCBW System Subjected to Oblique Wave Incidence -- 10.5 Summary and Conclusions -- 10.5.1 The Salient Conclusions Drawn from the Studies Are -- References -- 11 Power Take-Off Devices for Wave Energy Converters -- 11.1 Introduction to Wave Energy -- 11.2 Types of Power Take-Off Mechanisms Used in Point Absorbers -- 11.2.1 Air Turbines -- 11.2.2 Hydraulic Converters -- 11.2.3 Hydro Turbines -- 11.2.4 Direct Mechanical Drive Systems -- 11.2.5 Direct Electrical Drive Systems -- 11.3 Conclusion -- References -- 12 Wells Turbine as a Power Take-Off Mechanism for Wave Energy Converters -- 12.1 Introduction -- 12.2 Historical Overview -- 12.3 Wells Turbine: Principle of Operation -- 12.4 Variations of Wells Turbine -- 12.4.1 Monoplane Wells Turbine -- 12.5 Turbines with Guide Vane -- 12.6 Turbines with Non-zero Pitch Angles -- 12.7 Turbines with Variable Pitch Angles -- 12.8 Unsteady Flow Analysis -- 12.9 Starting Characteristics of Wells Turbine. |
12.10 Optimization of Air Turbines -- 12.11 Conclusion -- References -- 13 Experimental Testing of Air Turbines for Wave Energy Conversion -- 13.1 Introduction -- 13.2 Experimental Setup -- 13.3 Instrumentation: Sensors and Data Acquisition Systems -- 13.4 Generator Selection -- 13.5 Generator Characteristics -- 13.6 Experimental Procedure -- 13.7 Experimental Testing of an Impulse Turbine -- 13.7.1 Design and Fabrication -- 13.7.2 No-Load Test -- 13.7.3 Performance of the Turbine -- 13.7.4 Power Calculation: Load Test -- 13.8 Experimental Testing of a Wells Turbine -- 13.8.1 Design and Fabrication -- 13.8.2 Starting Characteristics -- 13.8.3 No-Load Test -- 13.8.4 Test with Resistive Loading -- 13.9 Uncertainty Analysis -- 13.10 Conclusions -- References -- 14 Passive Flow Control Methods for Performance Augmentation in Air Turbines Used for Wave Energy Conversion-A Review -- 14.1 Wave Energy -- 14.2 Oscillating Water Column -- 14.3 Air Turbines for Wave Energy Conversion -- 14.3.1 Wells Turbine -- 14.3.2 Axial Impulse Turbine -- 14.4 Flow Control Methods -- 14.5 Passive Flow Control Methods in Wells Turbine -- 14.5.1 Blade Sweep -- 14.5.2 Blade Setting Angle -- 14.5.3 Penetrating Ring and Endplate at the Blade Tip -- 14.5.4 Non-uniform Tip Clearance -- 14.5.5 Variable Chord Blade -- 14.5.6 Casing Groove -- 14.5.7 Suction Slots -- 14.5.8 Variable Thickness Blade -- 14.5.9 Leading-Edge Undulation -- 14.5.10 Radiused Edge Tip Blade -- 14.5.11 Static Extended Trailing Edge (SETE) -- 14.5.12 Gurney Flap -- |
|
|
|
|
|
|
|
|
14.5.13 Combined Radiused Edge Tip, Static Extended Trailing Edge, and Variable Thickness Blade -- 14.6 Passive Flow Control Methods in Axial Impulse Turbine -- 14.6.1 Endplates -- 14.6.2 Blade Setting Angle -- 14.6.3 Penetration Ring -- 14.6.4 Leaned Blade -- 14.7 Conclusions -- References. |
15 Optimization of an Impulse Turbine for Efficient Wave Energy Extraction. |
|
|
|
|
|
| |