1.

Record Nr.

UNIORUON00289601

Autore

KULCZYCKA-SALONI, Janina

Titolo

Boleslav Prus / Janina Kulczycka-Saloni

Pubbl/distr/stampa

Warszawa, : Panstwowe Wydawnictwo Popularno-Naukowe ; Wiedza Powszechna, 1955

Descrizione fisica

252 p. : ill. ; 21 cm.

Disciplina

891.85

Soggetti

PRUS BOLESLAW

Lingua di pubblicazione

Polacco

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910520085203321

Titolo

Proceedings of the Forum "Math-for-Industry" 2018 : Big Data Analysis, AI, Fintech, Math in Finances and Economics / / edited by Jin Cheng, Xu Dinghua, Osamu Saeki, Tomoyuki Shirai

Pubbl/distr/stampa

Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2021

ISBN

981-16-5576-6

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (191 pages)

Collana

Mathematics for Industry, , 2198-3518 ; ; 35

Disciplina

510.243631

Soggetti

Engineering mathematics

Quantitative research

Statistics

Engineering Mathematics

Data Analysis and Big Data

Applied Statistics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references.



Nota di contenuto

A Brief Review of Some Swarming Models using Stochastic Differential Equations -- Copula-based estimation of Value at Risk for the portfolio problem -- An Overview of Exact Solution Methods for Guaranteed Minimum Death Benefit Options in Variable Annuities -- Determinantal reinforcement learning with techniques to avoid poor local optima -- Surface Denoising based on Normal Filtering in a Robust Statistics Framework -- Mathematical Modeling and Inverse Problem Approaches for Functional -- Clothing Design based on Thermal Mechanism -- Unique continuation on a sphere for Helmholtz equation and its numerical treatments -- Notes on Backward Stochastic Differential Equations for Computing XVA.

Sommario/riassunto

This volume includes selected technical papers presented at the Forum “Math-for-Industry” 2018. The papers written by eminent researchers and academics working in the area of industrial mathematics from the viewpoint of financial mathematics, machine learning, neural networks, inverse problems, stochastic modelling, etc., discuss how the ingenuity of science, technology, engineering and mathematics are and will be expected to be utilized. This volume focuses on the role that mathematics-for-industry can play in interdisciplinary research to develop new methods. The contents are useful for researchers both in academia and industry working in interdisciplinary sectors.