1.

Record Nr.

UNINA9910464771303321

Autore

Gan Guojun <1979->

Titolo

Measure, probability, and mathematical finance : a problem oriented approach / / Guojun Gan, Chaoqun Ma, Hong Xie

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , 2014

©2014

ISBN

1-118-83198-5

1-118-83757-6

Edizione

[1st edition]

Descrizione fisica

1 online resource (741 p.)

Disciplina

332.01/5195

Soggetti

Finance - Mathematical models

Social sciences - Research - Statistical methods

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

MEASURE, PROBABILITY, AND MATHEMATICAL FINANCE: A Problem-Oriented Approach; Copyright; CONTENTS; Preface; Financial Glossary; PART I MEASURE THEORY; 1 Sets and Sequences; 1.1 Basic Concepts and Facts; 1.2 Problems; 1.3 Hints; 1.4 Solutions; 1.5 Bibliographic Notes; 2 MEASURES; 2.1 Basic Concepts and Facts; 2.2 Problems; 2.3 Hints; 2.4 Solutions; 2.5 Bibliographic Notes; 3 EXTENSION OF MEASURES; 3.1 Basic Concepts and Facts; 3.2 Problems; 3.3 Hints; 3.4 Solutions; 3.5 Bibliographic Notes; 4 LEBESGUE-STIELT JES MEASURES; 4.1 Basic Concepts and Facts; 4.2 Problems; 4.3 Hints; 4.4 Solutions

4.5 Bibliographic Notes5 MEASURABLE FUNCTIONS; 5.1 Basic Concepts and Facts; 5.2 Problems; 5.3 Hints; 5.4 Solutions; 5.5 Bibliographic Notes; 6 LEBESGUE INTEGRATION; 6.1 Basic Concepts and Facts; 6.2 Problems; 6.3 Hints; 6.4 Solutions; 6.5 Bibliographic Notes; 7 THE RADON-NIKODYM THEOREM; 7.1 Basic Concepts and Facts; 7.2 Problems; 7.3 Hints; 7.4 Solutions; 7.5 Bibliographic Notes; 8 LP SPACES; 8.1 Basic Concepts and Facts; 8.2 Problems; 8.3 Hints; 8.4 Solutions; 8.5 Bibliographic Notes; 9 CONVERGENCE; 9.1 Basic Concepts and Facts; 9.2 Problems; 9.3 Hints; 9.4 Solutions

9.5 Bibliographic Notes10 PRODUCT MEASURES; 10.1 Basic Concepts



and Facts; 10.2 Problems; 10.3 Hints; 10.4 Solutions; 10.5 Bibliographic Notes; PART IIPROBABILITY THEORY; 11 EVENTS AND RANDOM VARIABLES; 11.1 Basic Concepts and Facts; 11.2 Problems; 11.3 Hints; 11.4 Solutions; 11.5 Bibliographic Notes; 12 INDEPENDENCE; 12.1 Basic Concepts and Facts; 12.2 Problems; 12.3 Hints; 12.4 Solutions; 12.5 Bibliographic Notes; 13 EXPECTATION; 13.1 Basic Concepts and Facts; 13.2 Problems; 13.3 Hints; 13.4 Solutions; 13.5 Bibliographic Notes; 14 CONDITIONAL EXPECTATION; 14.1 Basic Concepts and Facts

14.2 Problems14.3 Hints; 14.4 Solutions; 14.5 Bibliographic Notes; 15 INEQUALITIES; 15.1 Basic Concepts and Facts; 15.2 Problems; 15.3 Hints; 15.4 Solutions; 15.5 Bibliographic Notes; 16 LAW OF LARGE NUMBERS; 16.1 Basic Concepts and Facts; 16.2 Problems; 16.3 Hints; 16.4 Solutions; 16.5 Bibliographic Notes; 17 CHARACTERISTIC FUNCTIONS; 17.1 Basic Concepts and Facts; 17.2 Problems; 17.3 Hints; 17.4 Solutions; 17.5 Bibliographic Notes; 18 DISCRETE DISTRIBUTIONS; 18.1 Basic Concepts and Facts; 18.2 Problems; 18.3 Hints; 18.4 Solutions; 18.5 Bibliographic Notes; 19 CONTINUOUS DISTRIBUTIONS

19.1 Basic Concepts and Facts19.2 Problems; 19.3 Hints; 19.4 Solutions; 19.5 Bibliographic Notes; 20 CENTRAL LIMIT THEOREMS; 20.1 Basic Concepts and Facts; 20.2 Problems; 20.3 Hints; 20.4 Solutions; 20.5 Bibliographic Notes; PART III STOCHASTIC PROCESSES; 21 STOCHASTIC PROCESSES; 21.1 Basic Concepts and Facts; 21.2 Problems; 21.3 Hints; 21.4 Solutions; 21.5 Bibliographic Notes; 22 MARTINGALES; 22.1 Basic Concepts and Facts; 22.2 Problems; 22.3 Hints; 22.4 Solutions; 22.5 Bibliographic Notes; 23 STOPPING TIMES; 23.1 Basic Concepts and Facts; 23.2 Problems; 23.3 Hints; 23.4 Solutions

23.5 Bibliographic Notes

Sommario/riassunto

An introduction to the mathematical theory and financial models developed and used on Wall Street  Providing both a theoretical and practical approach to the underlying mathematical theory behind financial models, Measure, Probability, and Mathematical Finance: A Problem-Oriented Approach presents important concepts and results in measure theory, probability theory, stochastic processes, and stochastic calculus. Measure theory is indispensable to the rigorous development of probability theory and is also necessary to properly address martingale measures, the change of num



2.

Record Nr.

UNINA9910516002203321

Autore

Boissieux Laurence

Titolo

Des chevaliers dans la montagne / / Stéphane Gal

Pubbl/distr/stampa

Grenoble, : UGA Éditions, 2021

Grenoble : , : UGA Éditions, , 2021

ISBN

2-37747-328-8

Descrizione fisica

1 online resource (220 pages)

Collana

Carrefours des idées

Altri autori (Persone)

CahouëtViolaine

DarjClémentine

FlorePatrice

GalStéphane

MartinOlivier

QuaineFranck

ReveretLionel

Soggetti

Geography

History

Medieval &amp; Renaissance Studies

Marignan

Renaissance

MarchAlp

guerres d'Italie

troupe

Bayard

armures

montagne

François Ier

chevalier

territoire

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia



Sommario/riassunto

1515 : Marignan ! Date la plus facile à retenir de toute l’Histoire ! Mais qui sait qu’avant la fameuse bataille, François Ier et ses canons avaient franchi les Alpes par des chemins inconnus ? Et que le roi et ses guerriers étaient en armure de combat à 2 000 m d’altitude ?  En 2019, des scientifiques et passionnés ont décidé de réitérer l’exploit. Non par pure performance, mais afin d’en mesurer les effets sur le corps et ainsi de mieux comprendre les conditions de traversée des montagnes par les armées de la Renaissance. Il a fallu pour cela faire fabriquer des armures, les endosser et les tester, sur le terrain comme en laboratoire, grâce à des technologies de pointe.  En faisant dialoguer les disciplines, telles que l’histoire, la biomécanique, l’informatique et la physiologie, mais aussi des sportifs, associations et troupes de montagne, le projet MarchAlp a fait du corps armé une source d’information, de la montagne un laboratoire, d’une aventure scientifique une aventure humaine