1.

Record Nr.

UNINA9910510575703321

Autore

Sun Yu

Titolo

Field-Driven Micro and Nanorobots for Biology and Medicine

Pubbl/distr/stampa

Cham : , : Springer International Publishing AG, , 2022

©2022

ISBN

9783030801977

9783030801960

Descrizione fisica

1 online resource (422 pages)

Altri autori (Persone)

WangXi'an

YuJiangfan

Soggetti

Microrobots

Nanotechnology

Electronic books.

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Book Description -- Contents -- About the Editors -- Chapter 1: Fundamentals and Field-Driven Control of Micro-/Nanorobots -- 1.1 Introduction -- 1.2 General Architecture of MRI-Guided Nanorobotic Systems -- 1.3 Propulsion and Navigation Limitations at Microscales -- 1.4 Theoretical Modeling of Steering and Navigation of Microrobots in a Fluid -- 1.4.1 Modeling of Physical Forces on Magnetic Microrobots -- Hydrodynamics -- Apparent Height -- Magnetic Force -- Contact Forces -- Gravitational Forces -- Van der Waals Forces -- 1.4.2 State-Space Representation -- 1.5 Control Strategies -- 1.5.1 MRI-Based Backstepping Control Approach -- 1.5.2 MRI-Based Predictive Control Approach -- 1.5.3 MRI-Based Optimal Control Approach -- 1.6 Results -- 1.7 Conclusion -- References -- Chapter 2: Ultrasound-Powered Micro-/Nanorobots: Fundamentals and Biomedical Applications -- 2.1 Introduction -- 2.2 Fundamentals of Ultrasound Physics -- 2.2.1 Acoustic Radiation Forces -- 2.2.2 Fundamentals of Acoustic Streaming -- 2.3 Designing Ultrasound Micro-/Nanomotors -- 2.3.1 Microrod Streamers -- Early Discoveries -- Mechanisms -- Biomedical Applications -- Practical Considerations -- Usefulness in Basic Sciences -- 2.3.2 Bubble Streamers -- Mechanism -- Notable Studies --



Practical Considerations -- 2.3.3 Flagellar Streamers -- 2.3.4 Acoustic Jets -- 2.4 Conclusion and Future Prospects -- References -- Chapter 3: Manipulation and Patterning of Micro-objects Using Acoustic Waves -- 3.1 Introduction -- 3.2 Forces -- 3.2.1 Acoustic Radiation Force -- 3.2.2 Bjerknes Forces -- 3.2.3 Acoustic Streaming-Induced Drag Forces -- 3.3 Excitation Methods -- 3.3.1 Bulk Acoustic Waves -- Theory -- 3.3.2 Design Considerations -- 3.3.3 Surface Acoustic Waves -- Theory -- 3.3.4 Tweezing -- Ultrasonic Beams -- Ultrasonic Arrays -- Acoustic Structures -- 3.4 Applications.

3.4.1 Standing Waves -- 3.4.2 Travelling Waves -- 3.4.3 Acoustic Tweezing and Micro-robots -- 3.5 Conclusions and Outlook -- References -- Chapter 4: Light-Driven Microrobots: Mechanisms and Applications -- 4.1 Introduction -- 4.2 Optical Microrobot -- 4.3 Opto-mechanical Soft Microrobots -- 4.4 Opto-chemical Microrobots -- 4.5 Conclusion and Outlook -- References -- Chapter 5: Electric-Field-Driven Micro/Nanomachines for Biological Applications -- 5.1 Introduction -- 5.2 Fundamentals -- 5.2.1 Low Reynolds Number Physics and Laminar Flow -- 5.2.2 Electrophoresis and the Electric Double Layer -- 5.2.3 Dielectrophoresis and the Clausius-Mossotti Factor -- 5.2.4 DC and AC Electroosmosis -- DC Electroosmosis -- AC Electroosmosis -- 5.2.5 Combined AC and DC E-Fields for E-Field-Assisted Nano-manipulation -- 5.2.6 Other Factors to Consider -- Brownian Motion and Joule Heating -- Properties of the Suspension Medium -- 5.3 Applications of the Electric-Tweezer Manipulation in Biological Research -- 5.3.1 Cytokine Molecule Delivery -- 5.3.2 Cargo Delivery -- 5.3.3 Tunable Release of Biochemicals for Ultrasensitive SERS Detection -- 5.3.4 Electrical Capture of Biochemical Molecules -- 5.3.5 Assembly of Quantum Dot Nanowires for Location Deterministic Biomolecule Sensing -- 5.4 Conclusion -- References -- Chapter 6: Electrophoresis-Based Manipulation of Micro- and Nanoparticles in Fluid Suspensions -- 6.1 Introduction -- 6.2 Electric Field-Based Particle Manipulation -- 6.3 EP-Based Motion Model and Problem Formulation -- 6.3.1 System Configuration -- 6.3.2 EP-Based Motion Model -- 6.3.3 Problem Formulation -- 6.4 EP-Based Particle Motion Control -- 6.4.1 Nonlinear Feedback Control -- Sequential Particle Control and Assembly -- Simultaneous Particle Control -- 6.4.2 Adaptive Control -- 6.4.3 Adaptive Tube Model Predictive Control -- Adaptive Tube MPC Design.

Manipulation Capability -- Experimental Result -- 6.5 EP-Based Particle Motion Planning -- 6.5.1 Heuristic-Based Minimum-Time Motion Planning -- 6.5.2 Network Flow-Based Minimum-Distance Motion Planning -- 6.5.3 Sampling-Based Motion Planning -- 6.6 EP-Based Adaptive Manipulation Scheme of Micro- and Nanoparticles -- 6.7 Conclusion -- References -- Chapter 7: Magneto-Acoustic Hybrid Micro-/Nanorobot -- References -- Chapter 8: Colloidal Microrobotic Swarms -- 8.1 Introduction -- 8.2 Field-Driven Microrobotic Swarms -- 8.3 Vortex-Like Swarms -- 8.3.1 Vortices Merging -- 8.3.2 Minimum Particle Concentration of Generating a VPNS -- 8.4 Characteristics of a VPNS -- 8.5 Pattern Transformation of VPNS -- 8.5.1 Core Size Modification -- 8.5.2 Spread State -- 8.6 Experimental Results and Discussion -- 8.6.1 Generating a Vortex-Like Swarm -- 8.6.2 Characterization of a VPNS -- 8.6.3 Pattern Transformation of a VPNS -- Change of Core Size -- Spread State of VPNS -- 8.6.4 Morphology of Swarm Pattern During Locomotion -- Motion in a Synchronized Fashion -- Tuneable Trapping Forces of VPNSs -- Locomotion in a Channel -- Discussion on Imaging Modality -- 8.7 Conclusion -- References -- Chapter 9: Shape-Programmable Magnetic Miniature Robots: A Critical Review -- 9.1 Introduction -- 9.2 Theory



-- 9.2.1 General Deformation Mechanics -- 9.2.2 Deformation Mechanics of Shape-Programmable Magnetic Robots with Beam-Like Configurations -- 9.2.3 Rigid-Body Motion -- 9.3 Programming and Fabrication Methods -- 9.3.1 Programming Methods -- 9.3.2 Fabrication Methods -- 9.4 Locomotion and Mechanical Functionalities -- 9.4.1 Locomotion -- 9.4.2 Mechanical Functionalities -- 9.5 Discussion -- 9.6 Conclusion -- References -- Chapter 10: In Vitro Biosensing Using Micro-/Nanomachines -- 10.1 Introduction -- 10.2 Propulsion, Function of Micro-/Nanomachines.

10.2.1 Propulsion of Micro-/Nanomachines -- 10.2.2 Chemical-, Biological-, and Self-Functionalization of Micro-/Nanomachines -- 10.3 Micro-/Nanomachines for Sensing -- 10.3.1 Sensing Mechanisms of Micro-/Nanomachines -- 10.3.2 In Vitro Detection for Chemical and Biological Agent -- 10.3.3 Intracellular Monitoring of Life-Important Properties and Molecules -- 10.3.4 Pathogens and Biomarker Discrimination Based on Micro-/Nanomachines -- 10.4 Conclusion and Perspective -- References -- Chapter 11: Biophysical Measurement of Cellular and Intracellular Structures Using Magnetic Tweezers -- 11.1 Introduction -- 11.2 Principles of Magnetic Micromanipulation -- 11.2.1 Magnetic Microbead -- 11.2.2 Magnetic Force and Magnetic Moment -- 11.2.3 Magnetic Bead Dynamics -- 11.2.4 Magnetic Tweezers Based on Gradient Force -- 11.2.5 Magnetic Tweezers Based on Torque -- 11.3 Mechanical Measurement of Single Cells Using Magnetic Tweezers -- 11.3.1 Measurements of Cell Mechanics -- 11.3.2 Measurement of Cellular Rheological Properties -- 11.4 Mechanical Measurement of Intracellular Structures -- 11.4.1 Measurement of Cell Nucleus and Cytoskeleton -- 11.4.2 Measurement of Cytoskeleton, DNA Strands, and Intracellular Motor Proteins -- 11.5 Summary and Outlook -- References -- Chapter 12: Hepatic Vascular Network Construction Using Magnetic Fields -- 12.1 Introduction -- 12.2 Concept of Research -- 12.3 System of Magnetic Tweezers -- 12.3.1 Overall System of Manipulator -- 12.3.2 Simulation of Magnetic Tweezers -- 12.4 Method and Materials -- 12.4.1 Assembly Method of Multilayered Structure -- 12.4.2 Method of Cell Culture and Viability Test -- 12.5 Results and Discussion -- 12.5.1 Hepatic Lobule-Like Vascular Network in Fibrin Gel -- 12.5.2 Cell Viability in 3D Cellular Structure with Channels -- 12.6 Conclusion -- References -- Chapter 13: Biohybrid Microrobots.

13.1 Introduction -- 13.2 The Biological Motors of Motile Cells -- 13.3 Robots Based on Bacteria -- 13.3.1 Bacterial Robots Based on Chemotaxis -- 13.3.2 Bacterial Robots Based on Magnetotaxis or Embedding Paramagnetic Elements -- 13.3.3 Other Taxis Abilities and Multifunctional Robots -- 13.4 Microrobots Based on Other Motile Cells -- 13.4.1 Robots Based on Non-bacterial Flagellated Cells -- 13.4.2 Robots Based on Non-flagellated Cells -- 13.5 Challenges and Perspectives of Robots Based on Bacteria and Other Motile Cells -- 13.6 Muscle Cells as Biological Motors -- 13.6.1 Robots Based on Cardiomyocytes -- 13.6.2 Robots Based on Skeletal Muscle Cells -- 13.6.3 Robots Based on Insect-Derived Cells -- 13.7 Challenges and Perspectives of Robots Based on Muscle Cells -- References -- Chapter 14: Microrobots in the Gastrointestinal Tract -- 14.1 Introduction -- 14.2 Microrobots in GI Tract: Environmental Features and Propulsion -- 14.3 Propulsion of Microrobots in GI Tract -- 14.4 In Vivo Imaging and Localization of Microrobots in GI Tract -- 14.5 Enhanced Retention and Navigation of Microrobots in GI Tract -- 14.6 In-Stomach Application of Microrobots: Cargo Delivery and Therapy -- 14.7 Intestinal Application of Microrobots: Cargo Delivery -- 14.8 Biocompatible and Biodegradable -- 14.9 Conclusion and Future



Prospects -- References -- Chapter 15: Polymer-Based Swimming Nanorobots Driven by Chemical Fuels -- 15.1 Introduction -- 15.1.1 Challenges of Propulsion in Micro-/Nanoworld -- 15.1.2 Lessons from Natural Nanoswimmers -- 15.1.3 From Natural Biomotors, Molecular Motors, Toward Swimming Nanorobots -- 15.2 Bottom-Up Fabrication of Polymer-Based Swimming Nanorobots -- 15.2.1 Layer-by-Layer Assembly Technique -- 15.2.2 Supramolecular Assembly -- 15.2.3 Biological Hybridization -- 15.3 Motion Control -- 15.3.1 Navigation Using External Field.

15.3.2 Chemotaxis.