1.

Record Nr.

UNINA9910508483303321

Titolo

Plant growth and stress physiology / / Dharmendra K. Gupta, José Manuel Palma, editors

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-78420-7

Descrizione fisica

1 online resource (284 pages)

Collana

Plant in Challenging Environments ; ; Volume 3

Disciplina

581.31

Soggetti

Growth (Plants)

Plants - Effect of stress on

Creixement (Plantes)

Efecte de l'estrès sobre les plantes

Fisiologia vegetal

Llibres electrònics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Intro -- Preface -- Contents -- Chapter 1: Plant Stress, Acclimation, and Adaptation: A Review -- 1.1 Introduction -- 1.2 Stresses in Plants -- 1.3 Plant Responses Against Multiple Stressors to Develop Tolerance -- 1.4 Acclimation and Adaptation Against Multiple Stressors Through Different Signalling Pathways -- 1.4.1 Redox Signalling -- 1.4.2 MAP Kinase Pathway -- 1.4.3 Role of Phytohormones and Growth Regulators in Stress Signalling Pathway -- 1.5 Tolerance to Heavy Metals -- 1.5.1 Synthesis of Metal Chelators -- 1.5.2 Secretion of Organic Acids in Root Exudates -- 1.6 Tolerance to Heat Stress -- 1.7 Tolerance to Salt Stress -- 1.8 Plant Immune Response Against Biotic Stress -- 1.9 Antioxidant Defense System -- 1.9.1 Enzymatic Antioxidative System -- 1.9.2 Non-enzymatic Antioxidative System -- 1.10 Conclusion and Future Prospects -- References -- Chapter 2: Insights into Role of Invisible Partners in Plant Growth and Development -- 2.1 Introduction -- 2.2 Novel Insights in Plant-Microbiome Research -- 2.3 Influence of Endophytes on Plant Primary Growth and Secondary Metabolism -- 2.4 Effect of Endophytes in Imparting Stress Tolerance to Host Plants --



2.5 Endophytes-Mediated Biotic Stress Response in Host Plants -- 2.6 Role of Endophytes in Improving Phytoremediation -- 2.7 Bio-Active Secondary Metabolites Produced by Endophytes -- 2.8 Concluding Remarks and Future Research Directions -- References -- Chapter 3: High Temperature Sensing Mechanisms and Their Downstream Pathways in Plants -- 3.1 Introduction -- 3.2 Sensing of Warm Temperature -- 3.3 Pathways that Function Downstream to Warm Temperature Sensing -- 3.4 Sensing of Heat Stress -- 3.5 Pathways that Function Downstream to Heat Stress Sensing -- 3.5.1 HSFs- or MBF1c-Dependent Pathways to Protect Plants Against Heat Stress -- 3.5.2 Signals Involving Ca2+, ROS and NO.

3.5.3 Plant Hormone Signaling -- 3.5.4 Integration of Unfolded Protein Responses in Cytosol and Endoplasmic Reticulum (ER) -- 3.6 Conclusions -- References -- Chapter 4: From Beneficial Bacteria to Microbial Derived Elicitors: Biotecnological Applications to Improve Fruit Quality -- 4.1 Introduction -- 4.2 Plant Fitness. Growth and Mechanisms for Adaptation to Stress. Factors Limiting Growth -- 4.3 The Multifactor Solution: PGPR -- 4.4 Case Study: Blackberry -- 4.5 Conclusions -- References -- Chapter 5: Come Hell or High Water: Breeding the Profile of Eucalyptus Tolerance to Abiotic Stress Focusing Water Deficit -- 5.1 Introduction -- 5.2 Data Mining Challenge: The State of the Art of Research on Biomarkers for Water Deficit Tolerance in Eucalyptus -- 5.3 Brief on Phenotypic Biomarkers and Environmental Conditions -- 5.3.1 Anatomical -- 5.3.2 Morphological and Growth Measures -- 5.3.3 Nutritional -- 5.3.4 Physiological -- 5.4 Statistical Issues -- 5.4.1 Reliable Data and Reproducible Results -- 5.4.2 Repeatability, Reliability and Accuracy -- 5.4.3 Criteria for Selecting Biomarkers -- 5.4.4 Field, Greenhouse and Molecular Sources of Information -- 5.4.5 Experimental Design -- 5.4.6 Statistical Tools -- 5.5 Eucalyptus Interplay and Outcomes -- 5.5.1 Functional Homeostasis -- 5.6 Gaps and Future Research Outlook -- 5.7 Conclusions -- References -- Chapter 6: Organic Fertilization of Fruit Trees as an Alternative to Mineral Fertilizers: Effect on Plant Growth, Yield and Fruit Quality -- 6.1 Introduction -- 6.2 Organic Amendment -- 6.2.1 Animal Manure -- 6.2.2 Municipal Biosolids -- 6.2.3 Cover Crops -- 6.2.4 Agro-Industry Wastes -- 6.2.5 Compost -- 6.3 Effect of Organic Matter on Plants -- 6.3.1 Effect on Nutritional Status and Growth -- 6.3.2 Effect on Yield and Fruit Quality -- 6.4 Biofertilizers -- 6.5 Conclusions -- References.

Chapter 7: Evaluation of Turbulence Stress on Submerged Macrophytes Growing in Lowland Streams Using H2O2 as an Indicator -- 7.1 Introduction -- 7.2 Dominant Stressors in the Natural Water -- 7.3 Effect of Temperature on ROS and Antioxidant Activities -- 7.4 Effects of Photosynthesis on the H2O2 and Antioxidant Activities -- 7.5 The Indicator of the Fractions of Stresses Associated with the Turbulence Stresses -- 7.6 Stress Patterns of the Changing Light Intensity -- 7.7 Effect of the Water Turbulence on the Structural Components of the Macrophyte Tissues -- 7.8 Biomass -- 7.9 Conclusion -- References -- Chapter 8: Opportunities of Revegetation and Bioenergy Production in Marginal Areas -- 8.1 Global Solid Waste Generation -- 8.2 Nonhazardous Waste Treatment -- 8.3 Landfills Restoration. Postclosure Use -- 8.4 Bioenergy as Strategy in Closed Landfill -- 8.5 Conclusion -- References -- Chapter 9: Biochar Behaviour and the Influence of Soil Microbial Community -- 9.1 Introduction -- 9.2 Soil-Biochar Interaction (Biochar Behaviour in Soil) -- 9.3 Biochar-Soil Microbiota Interaction -- 9.3.1 The Role of Feeding Types -- 9.3.2 Bacteria -- 9.3.3 Fungi -- 9.3.4 Other Microbiotas -- 9.3.5 Archaeal -- 9.3.6 Nematodes -- 9.3.7 Actinomycetes -- 9.3.8 Enzyme Activities --



9.3.9 Factors Modulating Biochar-Microbiota Behaviour -- 9.3.10 Biochar Feedstock -- 9.3.11 Pyrolysis Temperature -- 9.3.12 Soil Type -- 9.3.13 Biochar Application Rate -- 9.3.14 Particle Size -- 9.3.15 Residence Time (Aging) -- 9.3.16 Presence of Organic Compounds -- 9.3.17 Land Use and Agricultural Management Practices -- 9.3.18 Implications for Soil Ecosystem -- 9.3.19 Waste Management -- 9.3.20 Immobilization and Sorption of Contaminants -- 9.3.21 Potential Source of Nutrients -- 9.3.22 Biogeochemical Cycling -- 9.3.23 Soil Biological Diversity and Activity -- 9.3.24 Food Quality.

9.4 Conclusions and Future Research -- References -- Chapter 10: New Insights into the Functional Role of Nitric Oxide and Reactive Oxygen Species in Plant Response to Biotic and Abiotic Stress Conditions -- 10.1 Introduction -- 10.2 Nitric Oxide Signalling in Plant Response to Stress Conditions -- 10.2.1 NO Signalling Under Biotic Stress -- 10.3 NO Signalling under Abiotic Stress -- 10.4 Reactive Oxygen Species and Oxidative Stress in Plants under Stress Conditions -- 10.4.1 Modulation of ROS Levels during Biotic Stress -- 10.4.2 Modulation of ROS Levels during Abiotic Stress -- 10.5 New Insights the Interaction Between NO and ROS in Plant Response to Stress Conditions -- 10.6 Conclusions -- References -- Chapter 11: Selenium Transport, Accumulation and Toxicity in Plants -- 11.1 Introduction -- 11.2 Selenium Uptake and Transport -- 11.3 Selenate -- 11.4 Selenite -- 11.5 Organic Selenium Compounds -- 11.6 Selenium Distribution, Translocation, and Accumulation -- 11.7 Beneficial Effects of Selenium for Plants -- 11.8 Selenium Toxicity in Plants -- 11.9 Toxicity of Selenoproteins -- 11.10 ROS-Induced Selenium Toxicity -- 11.11 RNS-Induced Selenium Toxicity -- 11.12 Phytoremediation -- 11.13 Phytoextraction -- 11.14 Phytovolatilization -- 11.15 Conclusions and Future Perspectives -- References -- Chapter 12: Selenium in Algae: Bioaccumulation and Toxicity -- 12.1 Introduction -- 12.2 Se Metabolism in Algae -- 12.2.1 Se Accumulation and Transformation -- 12.2.2 Se Beneficial Role, Toxicity and Detoxification Mechanisms -- 12.2.3 Algae as Se Bioindicators and Accumulators, and Their Applications -- 12.3 Conclusions -- References.