1.

Record Nr.

UNISALENTO991000366269707536

Autore

Catanoso, Carmelo G.

Titolo

Il piano operativo di sicurezza : indicazioni operative, schede esemplificative ed esempi concreti anche su CD-Rom / Carmelo G. Catanoso, Luca Mangiapane

Pubbl/distr/stampa

Milano : Il Sole 24 Ore, 2008

ISBN

9788832469561

Edizione

[3. ed.]

Descrizione fisica

xii, 562 p : ill. ; 24 cm + 1 CD ROM

Classificazione

34

Altri autori (Persone)

Mangiapane, Lucaauthor

Disciplina

331.823

Soggetti

Industrial accident

Industrial hygiene

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Aggiornato al Dlgs n. 81 del 9 aprile 2008



2.

Record Nr.

UNINA9910725962803321

Autore

Haipeter Thomas

Titolo

Soziale Standards in globalen Lieferketten : Internationale Richtlinien, unternehmerische Verantwortung und die Stimme der Beschäftigten

Pubbl/distr/stampa

Bielefeld : , : transcript, , 2023

©2023

ISBN

9783839467701

3839467705

Edizione

[1st ed.]

Descrizione fisica

1 online resource (163 pages)

Collana

Forschung aus der Hans-Böckler-Stiftung

Altri autori (Persone)

HelfenMarkus

KirschAnja

RosenbohmSophie

Disciplina

303.482

Soggetti

Globalization

Responsibility

Lingua di pubblicazione

Tedesco

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Frontmatter -- Inhalt -- Die Stimme der Beschäftigten und die Sicherung von Sozialstandards in globalen Lieferketten -- Globale Rahmenabkommen als Werkzeug zur Regulierung von Arbeitsstandards in Lieferketten? -- Global Framework Agreements in practice -- Menschenrechtliche Sorgfaltspflicht und der Einsatz von Worker Voice Tools -- »Schöne neue Lieferkettenwelt« -- Corona und das globale Machtgefälle in Lieferketten am Beispiel der Automobilindustrie -- Rechtliche Instrumente zur Umsetzung von Sozialstandards in Lieferketten -- Autor*innen und Herausgeber*innen

Sommario/riassunto

Die Verletzung internationaler Arbeits- und Sozialstandards entlang der Lieferkette ist bei global agierenden Unternehmen eher die Regel als die Ausnahme. Mittlerweile sind solche Firmen allerdings durch die Gesetzgebung gefordert, nach der Idee der Corporate Social Responsibility Verantwortung für die Beschäftigten ihrer Zulieferer zu übernehmen. Die Beiträger*innen zeigen hierzu Hintergründe auf und stellen Instrumente zur Durchsetzung sozialer Standards vor. Doch egal ob globale Rahmenabkommen und Lieferkettengesetze oder CSR-Richtlinien und digitale Tools - es zeigt sich, dass schlussendlich vor



allem Workers' Voice und Mitbestimmung zählen: Abhilfe ist nur möglich, wenn Missstände auch benannt werden.

3.

Record Nr.

UNINA9910506407703321

Titolo

Application of Machine Learning and Deep Learning Methods to Power System Problems / / edited by Morteza Nazari-Heris, Somayeh Asadi, Behnam Mohammadi-Ivatloo, Moloud Abdar, Houtan Jebelli, Milad Sadat-Mohammadi

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021

ISBN

3-030-77696-4

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (390 pages)

Collana

Power Systems, , 1860-4676

Disciplina

621.31028563

Soggetti

Electric power distribution

Electric power production

Machine learning

Energy policy

Energy Grids and Networks

Electrical Power Engineering

Machine Learning

Energy Policy, Economics and Management

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Chapter 1. Power System Challenges and Issues -- Chapter 2. Introduction and literature review of power system challenges and issues -- Chapter 3. Machine learning and power system planning: opportunities, and challenges -- Chapter 4. Introduction to Machine Learning Methods in Energy Engineering -- Chapter 5. Introduction and Literature Review of the Application of Machine Learning/Deep Learning to Control Problems of Power Systems  -- Chapter 6. Introduction and literature review of the application of machine learning/deep learning to load forecasting in power system -- Chapter 7. A Survey of Recent



particle swarm optimization (PSO)-Based Clustering Approaches to Energy Efficiency in Wireless Sensor Networks -- Chapter 8. Clustering in Power Systems Using Innovative Machine Learning/Deep Learning Methods -- Chapter 9. Voltage stability assessment in power grids using novel machine learning-based methods -- Chapter 10. Evaluation and Classification of cascading failure occurrence potential dueto line outage -- Chapter 11. LSTM-Assisted Heating Energy Demand Management in Residential Buildings -- Chapter 12. Wind Speed Forecasting Using Innovative Regression Applications of Machine Learning Techniques -- Chapter 13. Effective Load Pattern Classification by Processing the Smart Meter Data Based on Event-Driven Processing and Machine Learning -- Chapter 14. Prediction of Out-of-step Condition for Synchronous Generators Using Decision Tree Based on the Dynamic data by WAMS/PMU  -- Chapter 15. The adaptive neuro-fuzzy inference system model for short-term load, price and topology forecasting of distribution system -- Chapter 16. Application of Machine Learning for Predicting User Preferences in Optimal Scheduling of Smart Appliances -- Chapter 17. Machine Learning Approaches in a Real Power System and Power Markets.

Sommario/riassunto

This book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-edge case studies from around the world consider prediction, classification, clustering, and fault/event detection in power systems, providing effective and promising solutions for many novel challenges faced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses. Offers innovative machine learning and deep learning methods for dealing with power system issues; Provides promising solution methodologies; Covers theoretical background and experimental analysis.