| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNISALENTO991000366269707536 |
|
|
Autore |
Catanoso, Carmelo G. |
|
|
Titolo |
Il piano operativo di sicurezza : indicazioni operative, schede esemplificative ed esempi concreti anche su CD-Rom / Carmelo G. Catanoso, Luca Mangiapane |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Milano : Il Sole 24 Ore, 2008 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[3. ed.] |
|
|
|
|
|
Descrizione fisica |
|
xii, 562 p : ill. ; 24 cm + 1 CD ROM |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Industrial accident |
Industrial hygiene |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Aggiornato al Dlgs n. 81 del 9 aprile 2008 |
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910725962803321 |
|
|
Autore |
Haipeter Thomas |
|
|
Titolo |
Soziale Standards in globalen Lieferketten : Internationale Richtlinien, unternehmerische Verantwortung und die Stimme der Beschäftigten |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Bielefeld : , : transcript, , 2023 |
|
©2023 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (163 pages) |
|
|
|
|
|
|
Collana |
|
Forschung aus der Hans-Böckler-Stiftung |
|
|
|
|
|
|
Altri autori (Persone) |
|
HelfenMarkus |
KirschAnja |
RosenbohmSophie |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Globalization |
Responsibility |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Frontmatter -- Inhalt -- Die Stimme der Beschäftigten und die Sicherung von Sozialstandards in globalen Lieferketten -- Globale Rahmenabkommen als Werkzeug zur Regulierung von Arbeitsstandards in Lieferketten? -- Global Framework Agreements in practice -- Menschenrechtliche Sorgfaltspflicht und der Einsatz von Worker Voice Tools -- »Schöne neue Lieferkettenwelt« -- Corona und das globale Machtgefälle in Lieferketten am Beispiel der Automobilindustrie -- Rechtliche Instrumente zur Umsetzung von Sozialstandards in Lieferketten -- Autor*innen und Herausgeber*innen |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Die Verletzung internationaler Arbeits- und Sozialstandards entlang der Lieferkette ist bei global agierenden Unternehmen eher die Regel als die Ausnahme. Mittlerweile sind solche Firmen allerdings durch die Gesetzgebung gefordert, nach der Idee der Corporate Social Responsibility Verantwortung für die Beschäftigten ihrer Zulieferer zu übernehmen. Die Beiträger*innen zeigen hierzu Hintergründe auf und stellen Instrumente zur Durchsetzung sozialer Standards vor. Doch egal ob globale Rahmenabkommen und Lieferkettengesetze oder CSR-Richtlinien und digitale Tools - es zeigt sich, dass schlussendlich vor |
|
|
|
|
|
|
|
|
|
|
|
|
|
allem Workers' Voice und Mitbestimmung zählen: Abhilfe ist nur möglich, wenn Missstände auch benannt werden. |
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910506407703321 |
|
|
Titolo |
Application of Machine Learning and Deep Learning Methods to Power System Problems / / edited by Morteza Nazari-Heris, Somayeh Asadi, Behnam Mohammadi-Ivatloo, Moloud Abdar, Houtan Jebelli, Milad Sadat-Mohammadi |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2021.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (390 pages) |
|
|
|
|
|
|
Collana |
|
Power Systems, , 1860-4676 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Electric power distribution |
Electric power production |
Machine learning |
Energy policy |
Energy Grids and Networks |
Electrical Power Engineering |
Machine Learning |
Energy Policy, Economics and Management |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Chapter 1. Power System Challenges and Issues -- Chapter 2. Introduction and literature review of power system challenges and issues -- Chapter 3. Machine learning and power system planning: opportunities, and challenges -- Chapter 4. Introduction to Machine Learning Methods in Energy Engineering -- Chapter 5. Introduction and Literature Review of the Application of Machine Learning/Deep Learning to Control Problems of Power Systems -- Chapter 6. Introduction and literature review of the application of machine learning/deep learning to load forecasting in power system -- Chapter 7. A Survey of Recent |
|
|
|
|
|
|
|
|
|
|
|
particle swarm optimization (PSO)-Based Clustering Approaches to Energy Efficiency in Wireless Sensor Networks -- Chapter 8. Clustering in Power Systems Using Innovative Machine Learning/Deep Learning Methods -- Chapter 9. Voltage stability assessment in power grids using novel machine learning-based methods -- Chapter 10. Evaluation and Classification of cascading failure occurrence potential dueto line outage -- Chapter 11. LSTM-Assisted Heating Energy Demand Management in Residential Buildings -- Chapter 12. Wind Speed Forecasting Using Innovative Regression Applications of Machine Learning Techniques -- Chapter 13. Effective Load Pattern Classification by Processing the Smart Meter Data Based on Event-Driven Processing and Machine Learning -- Chapter 14. Prediction of Out-of-step Condition for Synchronous Generators Using Decision Tree Based on the Dynamic data by WAMS/PMU -- Chapter 15. The adaptive neuro-fuzzy inference system model for short-term load, price and topology forecasting of distribution system -- Chapter 16. Application of Machine Learning for Predicting User Preferences in Optimal Scheduling of Smart Appliances -- Chapter 17. Machine Learning Approaches in a Real Power System and Power Markets. |
|
|
|
|
|
|
Sommario/riassunto |
|
This book evaluates the role of innovative machine learning and deep learning methods in dealing with power system issues, concentrating on recent developments and advances that improve planning, operation, and control of power systems. Cutting-edge case studies from around the world consider prediction, classification, clustering, and fault/event detection in power systems, providing effective and promising solutions for many novel challenges faced by power system operators. Written by leading experts, the book will be an ideal resource for researchers and engineers working in the electrical power engineering and power system planning communities, as well as students in advanced graduate-level courses. Offers innovative machine learning and deep learning methods for dealing with power system issues; Provides promising solution methodologies; Covers theoretical background and experimental analysis. |
|
|
|
|
|
|
|
| |