| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910774613303321 |
|
|
Titolo |
Crip Genealogies |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Durham, : Duke University Press |
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9911004697003321 |
|
|
Titolo |
ANTEC 2006 plastics : Annual Technical Conference proceedings |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
[Place of publication not identified], : Society of Plastics Engineers, 2006 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (2916 p.) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Chemical & Materials Engineering |
Engineering & Applied Sciences |
Chemical Engineering |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
|
|
|
|
|
|
|
3. |
Record Nr. |
UNINA9910506397303321 |
|
|
Autore |
Pardoux E (Etienne), <1947-> |
|
|
Titolo |
Stochastic Partial Differential Equations : An Introduction / / by Étienne Pardoux |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2021.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (78 pages) |
|
|
|
|
|
|
Collana |
|
SpringerBriefs in Mathematics, , 2191-8201 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Stochastic analysis |
Differential equations |
Stochastic Analysis |
Differential Equations |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
-1. Introduction and Motivation -- 2. SPDEs as Infinite-Dimensional SDEs -- 3. SPDEs Driven By Space-Time White Noise -- References -- Index. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book gives a concise introduction to the classical theory of stochastic partial differential equations (SPDEs). It begins by describing the classes of equations which are studied later in the book, together with a list of motivating examples of SPDEs which are used in physics, population dynamics, neurophysiology, finance and signal processing. The central part of the book studies SPDEs as infinite-dimensional SDEs, based on the variational approach to PDEs. This extends both the classical Itô formulation and the martingale problem approach due to Stroock and Varadhan. The final chapter considers the solution of a space-time white noise-driven SPDE as a real-valued function of time and (one-dimensional) space. The results of J. Walsh's St Flour notes on the existence, uniqueness and Hölder regularity of the solution are presented. In addition, conditions are given under which the solution remains nonnegative, and the Malliavin calculus is applied. Lastly, reflected SPDEs and theirconnection with super Brownian motion are considered. At a time when new sophisticated branches of the subject are being developed, this book will be a welcome reference on classical |
|
|
|
|
|
|
|
|
|
|
SPDEs for newcomers to the theory. |
|
|
|
|
|
| |