| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990004871830403321 |
|
|
Autore |
Alberti, Rafael <1902-1999> |
|
|
Titolo |
Libro del mar / poemas de Rafael Alberti ; fotografias de F. Català Roca ; selección de Aitana Alberti |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Barcelona, : Editorial Lumen, c1968 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910504284203321 |
|
|
Autore |
Boado-Penas María del Carmen |
|
|
Titolo |
Pandemics : insurance and social protection / / editors, María del Carmen Boado-Penas, Julia Eisenberg, Şule Şahin |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham, : Springer International Publishing AG, 2021 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (xx, 298 pages) : illustrations (some color) |
|
|
|
|
|
|
Collana |
|
|
|
|
|
|
Classificazione |
|
EDU000000LAW014000MAT003000MAT029000 |
|
|
|
|
|
|
Altri autori (Persone) |
|
Boado-PenasMaría del Carmen |
EisenbergJulia |
ŞahinŞule |
|
|
|
|
|
|
|
|
Soggetti |
|
Epidemics |
Insurance - Mathematical models |
Insurance - Statistical methods |
Social security |
Assegurances |
Models matemàtics |
Estadística matemàtica |
Seguretat social |
Epidèmies |
Llibres electrònics |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Acknowledgements -- Contents -- Contributors -- 1 COVID-19: A Trigger for Innovations in Insurance? -- 1.1 Introduction -- 1.2 Discussions from the Perspective of Insurance and Social Protection -- 1.2.1 Commercial Insurance -- 1.2.2 The Role of the Governments and Social Protection -- 1.3 Listening to the Wind of Change -- References -- 2 Epidemic Compartmental Models and Their Insurance Applications -- 2.1 Introduction -- 2.2 Compartmental Models in Epidemiology -- 2.2.1 SIR Model -- 2.2.2 Other Compartmental Models -- 2.3 Epidemic Insurance |
2.3.1 Annuities and Insurance Benefits -- 2.3.2 Reserves -- 2.3.3 Further Extensions -- 2.3.4 Case Studies: COVID-19 -- 2.4 Resource Management -- 2.4.1 Pillar I: Regional and Aggregate Resources Demand Forecast -- 2.4.2 Pillar II: Centralised Stockpiling and Distribution -- 2.4.3 Pillar III: Centralised Resources Allocation -- 2.5 Conclusion -- References -- 3 Some Investigations with a Simple Actuarial Model for Infections Such as COVID-19 -- 3.1 Introduction -- 3.2 Multiple State Actuarial Models -- 3.3 A Simple Daily Model for Infection -- 3.4 Comparisons with the SIR Model |
3.5 Enhancements for COVID-19 and Initial Assumptions -- 3.6 Estimating Parameters Model 1 -- 3.7 Estimating Parameters Model 2 -- 3.8 Comments on Results of Models 1 and 2 -- 3.9 Further Extensions: Models 3 and 4 -- 3.10 Comments on Results of Models 3 and 4 -- 3.11 Projection Models -- 3.12 Problems and Unknowns -- 3.13 Other Countries -- 3.14 Conclusions -- References -- 4 Stochastic Mortality Models and Pandemic Shocks -- 4.1 Stochastic Mortality Models and the COVID-19 Shock -- 4.2 The Impact of COVID-19 on Mortality Rates |
4.3 Stochastic Mortality Models and Pandemics: Single-Population Models -- 4.3.1 Discrete-Time Single Population Models -- 4.3.2 Continuous-Time Single-Population Models -- 4.4 Stochastic Mortality Models and Pandemics: Multi-population -- 4.4.1 Discrete-Time Models -- 4.4.2 Continuous-Time Models -- 4.5 A Continuous-Time Multi-population Model with Jumps -- 4.6 Conclusions -- References -- 5 A Mortality Model for Pandemics and Other Contagion Events -- 5.1 Introduction -- 5.2 Highlights of Methodology and Findings -- 5.2.1 Summary of Methodology -- 5.2.2 Summary of Findings |
5.3 Semiparametric Regression in MCMC -- 5.3.1 MCMC Parameter Shrinkage -- 5.3.2 Spline Regressions -- 5.3.3 Why Shrinkage? -- 5.3.4 Cross Validation in MCMC -- 5.4 Model Details -- 5.4.1 Formulas -- 5.4.2 Fitting Process -- 5.5 Results -- 5.5.1 Extensions: Generalisation, Projections and R Coding -- 5.6 Conclusions -- References -- 6 Risk-Sharing and Contingent Premia in the Presence of Systematic Risk: The Case Study of the UK COVID-19 Economic Losses -- 6.1 Introduction -- 6.2 Risk Levels and Systematic Risk in Insurance -- 6.3 Mathematical Setup -- 6.3.1 Probability Space |
6.3.2 Insurance Preliminaries |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This open access book collects expert contributions on actuarial modelling and related topics, from machine learning to legal aspects, and reflects on possible insurance designs during an epidemic/pandemic. Starting by considering the impulse given by COVID-19 to the insurance industry and to actuarial research, the text |
|
|
|
|
|
|
|
|
|
|
covers compartment models, mortality changes during a pandemic, risk-sharing in the presence of low probability events, group testing, compositional data analysis for detecting data inconsistencies, behaviouristic aspects in fighting a pandemic, and insurers' legal problems, amongst others. Concluding with an essay by a practicing actuary on the applicability of the methods proposed, this interdisciplinary book is aimed at actuaries as well as readers with a background in mathematics, economics, statistics, finance, epidemiology, or sociology. |
|
|
|
|
|
| |