1.

Record Nr.

UNINA9910502664203321

Autore

Priyadharma Subekti

Titolo

Internet and social change in rural Indonesia : from development communication to communication development in decentralized Indonesia / / Subekti Priyadharma

Pubbl/distr/stampa

Wiesbaden, Germany : , : Springer VS, , [2021]

©2021

ISBN

3-658-35533-6

Descrizione fisica

1 online resource (351 pages)

Collana

VS Research

Disciplina

303.609598

Soggetti

Internet - Social aspects - Indonesia

Communication in rural development - Indonesia

Communication policy - Indonesia

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

This book is based on an empirical research which explores bottom-up development practices initiated and organized by rural communities in the Indonesian periphery by placing "communication" at its core of analysis. The aim is to determine the extent that the Indonesian decentralization policy and the use of internet and other digital Information and Communication Technologies (ICTs) has affected the theory and practice of development communication as well as changes in relations between the center and the periphery within the context of Indonesian rural development. The book takes on periphery perspective in center-periphery interactions and relations. Hence, it belongs to "periphery research" that has rarely been used in recent decades. By using Grounded Theory for its data collection and analysis method, the results of this study are grouped into two major thematic categories: "communication development", instead of development communication, and "communication empowerment".



2.

Record Nr.

UNINA9910915676003321

Autore

Fan Zhaobing

Titolo

Affine Hecke Algebras and Quantum Symmetric Pairs

Pubbl/distr/stampa

Providence : , : American Mathematical Society, , 2023

©2023

ISBN

1-4704-7319-4

Edizione

[1st ed.]

Descrizione fisica

1 online resource (108 pages)

Collana

Memoirs of the American Mathematical Society ; ; v.281

Classificazione

17B1020G4220G43

Altri autori (Persone)

LaiChun-Ju

LiYiqiang

Disciplina

512/.2

512.2

Soggetti

Hecke algebras

Schur complement

Affine algebraic groups

Quantum groups

Nonassociative rings and algebras -- Lie algebras and Lie superalgebras -- Representations, algebraic theory (weights)

Group theory and generalizations -- Linear algebraic groups and related topics -- Quantum groups (quantized function algebras) and their representations

Group theory and generalizations -- Linear algebraic groups and related topics -- Schur and $q$-Schur algebras

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di contenuto

Cover -- Title page -- Acknowledgment -- Notations -- Chapter 1. Introduction -- 1.1. History -- 1.2. The goal -- 1.3. Main results -- 1.4. The organization -- Part 1. Affine Schur algebras -- Chapter 2. Affine Schur algebras via affine Hecke algebras -- 2.1. Affine Weyl groups -- 2.2. Parabolic subgroups and cosets -- 2.3. Affine Schur algebra via Hecke -- 2.4. Set-valued matrices -- 2.5. A bijection -- 2.6. Computation in affine Schur algebra  ^{ }_{ , } -- 2.7. Isomorphism  ^{ ,   }_{ , }≅ ^{ }_{ , } -- Chapter 3. Multiplication formula for affine Hecke algebra -- 3.1. Minimal length representatives -- 3.2. Multiplication formula for affine Hecke algebra -- 3.3. An example -- Chapter 4. Multiplication formula for affine Schur algebra -- 4.1. A map



-- 4.2. Algebraic combinatorics for  ^{ }_{ , } -- 4.3. Multiplication formula for  ^{ }_{ , } -- 4.4. Special cases of the multiplication formula -- Chapter 5. Monomial and canonical bases for affine Schur algebra -- 5.1. Bar involution on  ^{ }_{ , } -- 5.2. A standard basis in  ^{ }_{ , } -- 5.3. Multiplication formula using [ ] -- 5.4. The canonical basis for  ^{ }_{ , } -- 5.5. A leading term -- 5.6. A semi-monomial basis -- 5.7. A monomial basis for  ^{ }_{ , } -- Part 2. Affine quantum symmetric pairs -- Chapter 6. Stabilization algebra  ̇^{ }_{ } arising from affine Schur algebras -- 6.1. A BLM-type stabilization -- 6.2. Stabilization of bar involutions -- 6.3. Multiplication formula for  ̇^{ }_{ } -- 6.4. Monomial and stably canonical bases for  ̇^{ }_{ } -- 6.5. Isomorphism  ̇^{ ,   }_{ }≅ ̇^{ }_{ } -- Chapter 7. The quantum symmetric pair ( _{ }, ^{ }_{ }) -- 7.1. The algebra  _{ } of Type A -- 7.2. The algebra  ^{ }_{ } -- 7.3. The algebra  ^{ }_{ } as a subquotient -- 7.4. Comultiplication on  ^{ }_{ } -- Chapter 8. Stabilization algebras arising from other Schur algebras.

8.1. Affine Schur algebras of Type -- 8.2. Monomial and canonical bases for  ^{  }_{ , } -- 8.3. Stabilization algebra of Type -- 8.4. Stabilization algebra of Type -- 8.5. Stabilization algebra of Type -- Appendix A. Length formulas in symmetrized forms by Zhaobing Fan, Chun-Ju Lai, Yiqiang Li and Li Luo -- A.1. Dimension of generalized Schubert varieties -- A.2. Length formulas of Weyl groups -- Bibliography -- Back Cover.

Sommario/riassunto

"We introduce an affine Schur algebra via the affine Hecke algebra associated to Weyl group of affine type C. We establish multiplication formulas on the affine Hecke algebra and affine Schur algebra. Then we construct monomial bases and canonical bases for the affine Schur algebra. The multiplication formula allows us to establish a stabilization property of the family of affine Schur algebras that leads to the modified version of an algebra Kc n. We show that Kc n is a coideal subalgebra of quantum affine algebra Uppglnq, and Uppglnq,Kc nq forms a quantum symmetric pair. The modified coideal subalgebra is shown to admit monomial and stably canonical bases. We also formulate several variants of the affine Schur algebra and the (modified) coideal subalgebra above, as well as their monomial and canonical bases. This work provides a new and algebraic approach which complements and sheds new light on our previous geometric approach on the subject. In the appendix by four of the authors, new length formulas for the Weyl groups of affine classical types are obtained in a symmetrized fashion"--