|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910502615603321 |
|
|
Autore |
Chen Joy Iong-zong |
|
|
Titolo |
Second International Conference on Image Processing and Capsule Networks : Icipcn 2021 |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Cham : , : Springer International Publishing AG, , 2021 |
|
©2022 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (840 pages) |
|
|
|
|
|
|
Collana |
|
Lecture Notes in Networks and Systems Ser. ; ; v.300 |
|
|
|
|
|
|
Altri autori (Persone) |
|
TavaresJoão Manuel R. S |
IliyasuAbdullah M |
DuKe-Lin |
|
|
|
|
|
|
|
|
Soggetti |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
Intro -- Foreword -- Preface -- Acknowledgments -- Contents -- A Survey of Machine Learning Techniques Applied for Automatic Traffic Light Recognition -- 1 Introduction -- 2 Major Challenges in Traffic Light Recognition -- 3 Traffic Light Recognition System -- 3.1 Dataset/Data Acquisition -- 3.2 Pre-processing -- 3.3 Localization -- 3.4 Feature Extraction Using Color and Shape -- 3.5 Verification -- 4 Discussion -- 5 Conclusion and Future Work -- 5.1 Concluding Remarks -- 5.2 Research Gaps and Future Work -- References -- Machine Learning Based Detection and Classification of Heart Abnormalities -- 1 Introduction -- 2 Methodology -- 2.1 Proposed Algorıthm for Detectıon and Classıfıcatıon of Abnormalıty -- 3 Results and Discussions -- 4 Conclusions -- References -- An Evaluation of Multiclass Leaf Classification Using Transfer Learning Techniques -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Residual Network (ResNet152) -- 3.2 MobileNet -- 3.3 Inception V3 -- 3.4 DenseNet201 -- 4 Experimental Analysis and Result -- 4.1 Data -- 4.2 Implementation -- 5 Discussion -- 6 Conclusion -- References -- Scene Generated with Text Guidance (VAAB System) -- 1 Introduction -- 2 Literature Survey -- 3 Architectural Details -- 3.1 Android Application -- 3.2 Refined Novel GAN -- 4 Experimental Details -- 4.1 How to Evaluate GANs? -- 4.2 Implementation -- 4.3 Comparision |
|
|
|
|