1.

Record Nr.

UNINA9910502198603321

Autore

Blackwell, Andrew

Titolo

Benvenuti a Chernobyl : e altre avventure nei luoghi più inquinati del mondo / Andrew Blackwell ; traduzione di Daniele A. Gewurz

Pubbl/distr/stampa

Bari ; Roma, : Laterza, 2021

ISBN

9788858145074

Descrizione fisica

XIII, 328 p. : ill. ; 21 cm

Collana

I Robinson. Storie di questo mondo

Disciplina

304.28

Locazione

BFS

FSPBC

Collocazione

304.28 BLA

VII C 600

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNISA996201887503316

Autore

Hyvärinen Aapo

Titolo

Independent component analysis [[electronic resource] /] / Aapo Hyvärinen, Juha Karhunen, Erkki Oja

Pubbl/distr/stampa

New York, : J. Wiley, c2001

ISBN

1-280-26480-2

9786610264803

0-470-30861-3

0-471-46419-8

0-471-22131-7

Descrizione fisica

1 online resource (505 p.)

Collana

Adaptive and learning systems for signal processing, communications, and control

Altri autori (Persone)

KarhunenJuha

OjaErkki

Disciplina

519.5

519.5/35

519.535

Soggetti

Multivariate analysis

Principal components analysis

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references (p. 449-475) and index.

Nota di contenuto

Contents; Preface; 1 Introduction; 1.1 Linear representation of multivariate data; 1.1.1 The general statistical setting; 1.1.2 Dimension reduction methods; 1.1.3 Independence as a guiding principle; 1.2 Blind source separation; 1.2.1 Observing mixtures of unknown signals; 1.2.2 Source separation based on independence; 1.3 Independent component analysis; 1.3.1 Definition; 1.3.2 Applications; 1.3.3 How to find the independent components; 1.4 History of ICA; Part I: MATHEMATICAL PRELIMINARIES; 2 Random Vectors and Independence; 2.1 Probability distributions and densities

2.2 Expectations and moments2.3 Uncorrelatedness and independence; 2.4 Conditional densities and Bayes' rule; 2.5 The multivariate gaussian density; 2.6 Density of a transformation; 2.7 Higher-order statistics; 2.8 Stochastic processes *; 2.9 Concluding remarks and references; Problems; 3 Gradients and Optimization Methods; 3.1 Vector and



matrix gradients; 3.2 Learning rules for unconstrained optimization; 3.3 Learning rules for constrained optimization; 3.4 Concluding remarks and references; Problems; 4 Estimation Theory; 4.1 Basic concepts; 4.2 Properties of estimators

4.3 Method of moments4.4 Least-squares estimation; 4.5 Maximum likelihood method; 4.6 Bayesian estimation *; 4.7 Concluding remarks and references; Problems; 5 Information Theory; 5.1 Entropy; 5.2 Mutual information; 5.3 Maximum entropy; 5.4 Negentropy; 5.5 Approximation of entropy by cumulants; 5.6 Approximation of entropy by nonpolynomial functions; 5.7 Concluding remarks and references; Problems; Appendix proofs; 6 Principal Component Analysis and Whitening; 6.1 Principal components; 6.2 PCA by on-line learning; 6.3 Factor analysis; 6.4 Whitening; 6.5 Orthogonalization

6.6 Concluding remarks and referencesProblems; Part II: BASIC INDEPENDENT COMPONENT ANALYSIS; 7 What is Independent Component Analysis?; 7.1 Motivation; 7.2 Definition of independent component analysis; 7.3 Illustration of ICA; 7.4 ICA is stronger that whitening; 7.5 Why gaussian variables are forbidden; 7.6 Concluding remarks and references; Problems; 8 ICA by Maximization of Nongaussianity; 8.1 ""Nongaussian is independent""; 8.2 Measuring nongaussianity by kurtosis; 8.3 Measuring nongaussianity by negentropy; 8.4 Estimating several independent components; 8.5 ICA and projection pursuit

8.6 Concluding remarks and referencesProblems; Appendix proofs; 9 ICA by Maximum Likelihood Estimation; 9.1 The likelihood of the ICA model; 9.2 Algorithms for maximum likelihood estimation; 9.3 The infomax principle; 9.4 Examples; 9.5 Concluding remarks and references; Problems; Appendix proofs; 10 ICA by Minimization of Mutual Information; 10.1 Defining ICA by mutual information; 10.2 Mutual information and nongaussianity; 10.3 Mutual information and likelihood; 10.4 Algorithms for minimization of mutual information; 10.5 Examples; 10.6 Concluding remarks and references; Problems

11 ICA by Tensorial Methods

Sommario/riassunto

A comprehensive introduction to ICA for students and practitionersIndependent Component Analysis (ICA) is one of the most exciting new topics in fields such as neural networks, advanced statistics, and signal processing. This is the first book to provide a comprehensive introduction to this new technique complete with the fundamental mathematical background needed to understand and utilize it. It offers a general overview of the basics of ICA, important solutions and algorithms, and in-depth coverage of new applications in image processing, telecommunications, audio signal processing, and



3.

Record Nr.

UNISANNIONAP0408788

Autore

Coxeter, Harold Scott Macdonald <1907-2003>

Titolo

Redécouvrons la géométrie / H.S.M. Coxeter et S.L. Greitzer

Pubbl/distr/stampa

[Paris], : J. Gabay, [1997]

Titolo uniforme

Geometry revisited.

ISBN

2876471345

Descrizione fisica

X, 211 p. ; 22 cm

Altri autori (Persone)

Greitzer, Samuel L.

Disciplina

516

Soggetti

Geometria - Esercizi

Geometria - Problemi

Collocazione

RIPR. FACSFr. B                   0065

Lingua di pubblicazione

Francese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Trad. dall'inglese

Ripr. facs. dell'ed.: Paris : Dunod, 1971.