|
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910488696003321 |
|
|
Titolo |
Biotechnology for sustainable environment / / Sanket J. Joshi, Arvind Deshmukh and Hemen Sarma (editors) |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Gateway East, Singapore : , : Springer, , [2021] |
|
©2021 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (417 pages) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Bioremediation |
Bioremediació |
Llibres electrònics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
Intro -- Preface -- Contents -- About the Editors -- 1: Environmental Biotechnology: Toward a Sustainable Future -- 1.1 Introduction to Environmental Biotechnology -- 1.2 Worldwide Environmental Problems -- 1.2.1 Environmental Contamination -- 1.2.2 Global Warming -- 1.2.3 The Depletion of the Ozone Layer -- 1.2.4 Acid Rain -- 1.2.5 Depletion of Natural Resources -- 1.2.6 Overpopulation -- 1.2.7 Waste Disposal -- 1.2.8 Deforestation -- 1.2.9 Loss of Biodiversity -- 1.3 Bioremediation -- 1.3.1 Nano-Bioremediation Technologies for Sustainable Environment -- 1.4 Biotechnology to Control and Clear Air Pollution -- 1.4.1 Control Methods of Odor and Volatile Organic Compounds (VOCs) -- 1.5 Soil Management and Contamination -- 1.5.1 Sources of Soil Pollution -- 1.5.2 The Available Options for the Integrated Management of Contaminated Soils -- 1.5.2.1 Controlling Pollutant Entry into the Soil -- 1.5.2.2 Use of Physical and Chemical Means to Decontaminate Soil -- 1.5.2.3 Soil Contaminants Bioremediation -- 1.6 Effective Treatment of Wastewater -- 1.6.1 Choice of Methods for Wastewater Treatment -- 1.6.1.1 Small-Scale Wastewater Treatment -- 1.6.1.2 Large-Scale Wastewater Treatment -- 1.6.2 Biological Approach to Wastewater Treatment -- 1.7 Biotechnology Application to Industrial Sustainability -- 1.7.1 Fine Chemicals -- 1.7.2 Intermediate Chemicals -- 1.7.3 Polymers -- 1.7.4 |
|
|
|
|
|
|
|
|
|
Food Processing -- 1.7.5 Fiber Processing -- 1.7.6 Biotechnology Can Create a Source of Renewable Energy -- 1.8 Microorganisms in the Environment -- 1.8.1 Bio-Inputs for Global Sustainability -- 1.8.2 Antibiotics Are Used to Protect Plants -- 1.9 Further Biotechnological Aspects -- 1.9.1 Eco-Friendly Fuels -- 1.9.1.1 Biofuel Sources -- 1.10 Biopesticides -- 1.10.1 Microbial Pesticides -- 1.10.2 Biochemical Pesticides -- 1.10.2.1 Benefits of Biochemical Pesticides. |
1.10.2.2 Limitations of Biochemical Pesticides -- 1.11 Biofertilizers -- 1.11.1 Microbial Biofertilizers -- 1.12 Bioleaching -- 1.12.1 Bioleaching Uses -- 1.12.2 Mechanism of Bioleaching -- 1.13 Bioplastic -- 1.13.1 Merits of Bioplastics Over Conventional Plastics -- 1.13.1.1 Biodegradable -- 1.13.1.2 Eco-Friendly -- 1.14 Conclusion -- References -- 2: The Mystery of Methanogenic Archaea for Sustainable Development of Environment -- 2.1 Introduction -- 2.2 Microbiological Facets of Methanogens -- 2.2.1 Archaebacteria -- 2.2.2 Definitive Characteristics of Methanogenic Archaea -- 2.2.3 Anaerobiosis -- 2.2.4 A Diminutive Historical View of Methanogenic Archaea -- 2.2.5 Habitat -- 2.2.6 Methanogenic Phylogeny -- 2.2.6.1 Methanobacteriales -- 2.2.6.2 Methanococcales -- 2.2.6.3 Methanomicrobiales -- 2.2.6.4 Methanosarcinales -- 2.2.6.5 Methanopyrales -- 2.2.6.6 Methanocellales -- 2.2.6.7 Methanoplasmatales (Thermoplasmatales) -- 2.3 Morphological, Ecological, and Biological View of Methanogenic Archaea -- 2.3.1 Cell Shape, Motility, and Gas Vesicles -- 2.3.2 Gram Reaction -- 2.3.3 Methanogens as Syntrophs -- 2.3.4 Cell Envelope, Lipid Composition, and Antibiotic Resistance -- 2.4 Growth Parameters -- 2.4.1 Temperature, pH, Pressure, and Salinity -- 2.4.2 Substrate Range -- 2.4.2.1 Acetoclastic Methanogens -- 2.4.2.2 Hydrogenotrophic Methanogens -- 2.4.2.3 Methylotrophic Methanogens -- 2.5 Bioeconomy-Based Technologies for Environmental Sustainability -- 2.5.1 Bio-Based Carbon Dioxide Capture, Sequestration, Utilization, and Conversion (CCSUC) Technology -- 2.5.2 Anaerobic Digestion -- 2.5.2.1 Microbial Food Chains of Anaerobic Digestion -- 2.5.2.2 Methanogenesis -- 2.5.3 Energy Pool: Biofuel -- 2.5.4 MEOR: A Combining Hand of Biodegradation and Biotransformation -- 2.5.5 Microbially Enhanced Coal Bed Methane (MECoM) -- 2.5.6 Electromethanogenesis. |
2.5.7 Corrosion Prevention -- 2.5.8 Waste Management -- 2.5.9 Bio-Hydrogen Production -- 2.5.10 Other Active Applications -- 2.6 Conclusion and Future Perspectives -- References -- 3: Chitosan Coating Biotechnology for Sustainable Environment -- 3.1 Introduction -- 3.2 Coating Technology -- 3.3 Chitosan -- 3.4 Chitosan-Based Coatings -- 3.4.1 Chitosan-Based Polyester (CHI-PE) -- 3.4.1.1 Synthesis -- 3.4.1.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.1.3 X-Ray Diffraction (XRD) -- 3.4.1.4 Scanning Electron Microscope (SEM) -- 3.4.1.5 Swelling Performance -- 3.4.1.6 Antibacterial Activity -- 3.4.2 Chitosan-Based Polyurethane (CHI-PU) -- 3.4.2.1 Synthesis -- 3.4.2.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.2.3 X-Ray Diffraction (XRD) -- 3.4.2.4 Scanning Electron Microscope (SEM) -- 3.4.2.5 Wettability -- 3.4.2.6 Antibacterial Activity -- 3.4.3 Chitosan-Based Polyvinyl Acetate (CHI-PVA) -- 3.4.3.1 Synthesis -- 3.4.3.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.3.3 X-Ray Diffraction (XRD) -- 3.4.3.4 Morphology -- 3.4.3.5 Swelling Performance -- 3.4.3.6 Conductivity -- 3.4.4 Chitosan-Based Carboxymethyl Cellulose (CHI-CMC) -- 3.4.4.1 Synthesis -- 3.4.4.2 Fourier Transform Infrared Spectroscopy (FTIR) -- 3.4.4.3 X-Ray Diffraction (XRD) -- 3.4.4.4 Swelling Performance -- 3.4.4.5 Antimicrobial Activity -- 3.5 Summary -- 3.6 Future Perspectives -- |
|
|
|
|
|
|
|
References -- 4: Bacterial Biodegradation of Bisphenol A (BPA) -- 4.1 Introduction -- 4.2 Xenobiotic Metabolism and Biodegradation -- 4.2.1 Bisphenol A -- 4.2.1.1 Production and Uses of BPA -- 4.2.2 Hazards of BPA -- 4.2.3 Microorganisms Involved in BPA Degradation -- 4.2.4 BPA Degradation Pathway and Intermediates -- 4.3 Case Study -- 4.3.1 Determination of Enzyme Activity -- 4.3.2 Observations -- 4.3.3 Bisphenol A Degradation -- 4.4 Conclusion and Future Prospects -- References. |
5: Microbial Degradation of Marine Plastics: Current State and Future Prospects -- 5.1 Introduction -- 5.1.1 Plastics: The Marvel and The Global Problem -- 5.2 The Oceans Plastic Problem -- 5.2.1 Impacts of Plastic on Marine Life -- 5.3 Plastic Degradation -- 5.3.1 Abiotic Factors Influencing the Degradation of Plastic -- 5.3.2 The Potential for Microbially Mediated Plastic Degradation -- 5.4 Methods and Techniques Applied in the Assessment of Polymer Biodegradation -- 5.4.1 Methods to Evaluate Biodegradation -- 5.4.2 Colonization of Prokaryotes and Eukaryotes on Marine Plastic -- 5.4.2.1 Prokaryotic Colonizers on Marine Plastic -- 5.4.2.2 Eukaryotes as Plastic Colonizers and Degraders -- 5.5 Enzymatic Potential of Microbes -- 5.5.1 General Considerations -- 5.5.2 Extracellular Biodegradation -- 5.5.3 Intracellular Biodegradation -- 5.6 Valorization and Applications -- References -- 6: Mechanism and Pretreatment Effect of Fungal Biomass on the Removal of Heavy Metals -- 6.1 Introduction -- 6.2 Natural and Anthropogenic Sources of Heavy Metals -- 6.3 Passive and Active Biosorption -- 6.4 Fungal Biomass Generated from the Fermentation Industries -- 6.5 Fungal Cell Wall Structure -- 6.5.1 Advantages of Fungi as Biosorbents -- 6.5.2 Fungi as Biosorbents -- 6.6 Factors Affecting Biosorption Process -- 6.7 Effect of Pretreatment of Fungal Biomass on the Removal of Heavy Metals -- 6.8 Physical and Chemical Methods of Pretreatment of Fungal Biomass for the Removal of Heavy Metals -- 6.8.1 Physical Methods -- 6.8.2 Pretreatment Using Acids (Das et al. 2007) -- 6.8.3 Pretreatment Using Alkali (Das et al. 2007) -- 6.8.4 Pretreatment Using Organic Solvents (Das et al. 2007) -- 6.9 Mechanism of the Removal of Heavy Metals by the Fungal Biomass -- 6.9.1 Presence of Functional Groups on the Fungal Biomass -- 6.9.2 Direct Adherence on the Fungal Cell Wall. |
6.9.3 Functional Group on Chitosan -- 6.10 Immobilization of Fungal Biomass for Biosorption -- 6.11 Conclusions -- 6.12 Future Prospects -- References -- 7: Metal Bioremediation, Mechanisms, Kinetics and Role of Marine Bacteria in the Bioremediation Technology -- 7.1 Introduction -- 7.2 Heavy Metals and Their Sources -- 7.3 Mechanisms of Metal Bioremediation -- 7.3.1 Solubilization -- 7.3.1.1 Bioleaching -- 7.3.2 Immobilization -- 7.3.2.1 Bioaccumulation -- 7.3.2.2 Biosorption -- 7.3.3 Mechanisms of Biosorption -- 7.3.3.1 Cell Surface Adsorption -- 7.3.3.2 Extracellular Accumulation -- 7.3.3.3 Intracellular Accumulation -- 7.3.3.4 Precipitation -- 7.3.3.5 Transformation of Metals -- 7.4 Marine Bacteria -- 7.5 Marine Bacteria in Biosorption of Metals -- 7.6 Use of Genetically Modified Microorganisms in Biosorption -- 7.7 Factors Affecting Biosorption -- 7.8 Biosorption Isotherm Models -- 7.9 Biosorption Kinetics -- 7.10 Analytical Techniques to Analyse Biosorption Process -- 7.11 Living and Non-living Systems for Metal Sorption -- 7.12 Desorption and Metal Recovery -- 7.13 Future Work -- 7.14 Conclusion -- References -- 8: Biofilm-Associated Metal Bioremediation -- 8.1 Introduction -- 8.2 Heavy Metals and Their Toxicity -- 8.3 Biofilm: Composition and Structure -- 8.3.1 Composition -- 8.3.2 EPS Synthesis -- 8.3.3 Biofilm Structure and Its Formation -- 8.4 Biofilm-Producing Microbiota -- 8.4.1 Bacteria in Bioremediation of Heavy Metals -- 8.4.2 Fungi in |
|
|
|
|
|
|
|
|
Bioremediation of Heavy Metals: Mycoremediation -- 8.4.3 Algae in Bioremediation of Heavy Metals: Phycoremediation -- 8.5 Metal-Microbe Interaction and EPS-Mediated Strategies for Remediation -- 8.5.1 EPS-Mediated Metal Biosorption: Mechanism, Advantages, and Disadvantages -- 8.5.2 Strategies of Heavy-Metal and EPS Interaction and Its Remediation -- 8.5.3 Types of EPS and Its Remediation Strategies. |
8.5.3.1 Dead Biomass EPS. |
|
|
|
|
|
| |