1.

Record Nr.

UNINA9910485606303321

Autore

Ellenrieder Karl Dietrich von

Titolo

Control of marine vehicles / / Karl Dietrich von Ellenrieder

Pubbl/distr/stampa

Cham, Switzerland : , : Springer, , [2021]

©2021

ISBN

3-030-75021-3

Descrizione fisica

1 online resource (540 pages)

Collana

Springer Series on Naval Architecture, Marine Engineering, Shipbuilding and Shipping ; ; v.9

Disciplina

623.86

Soggetti

Automatic control

Marine engineering

Mechanical engineering

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- About the Author -- 1 Introduction -- 1.1 Overview -- 1.2 Automatic Control -- 1.3 Background Ideas -- 1.4 Typical Guidance, Navigation and Control Architectures of Marine Vehicles -- 1.4.1 Multilayered Software Architectures for Unmanned Vehicles -- 1.4.2 Inter-Process Communications Methods -- 1.5 Dynamic Modeling of Marine Vehicles -- 1.5.1 Kinematics of Marine Vehicles -- 1.5.2 Kinetics of Marine Vehicles -- Problems -- References -- Part I Linear Methods -- 2 Stability: Basic Concepts and Linear Stability -- 2.1 The Stability of Marine Systems -- 2.2 Basic Concepts in Stability -- 2.3 Flow Along a Line -- 2.3.1 Linear 1D Stability Analysis -- 2.4 Phase Plane Analysis -- 2.4.1 Linear 2D Stability Analysis -- 2.4.2 Classification of Linear 2D Systems -- 2.5 Lyapunov's Indirect (First) Method -- 2.6 Stability of Linear Time Invariant Systems -- 2.6.1 The Laplace Transform -- 2.6.2 Routh's Stability Criterion -- References -- 3 Time Response and Basic Feedback Control -- 3.1 Dynamic Response -- 3.1.1 The Impulse Response of 1st and 2nd Order Systems -- 3.1.2 The Step Response of 2nd Order Systems -- 3.1.3 Effects of Additional Poles and Zeros -- 3.2 Block Diagrams -- 3.3 Feedback Control -- 3.3.1 Proportional Feedback Control -- 3.3.2 Derivative Feedback Control -- 3.3.3 Integral Feedback Control -- 3.3.4 PID Feedback Control -- 3.4 Steady State Response -- 3.5



Additional Performance Measures -- References -- 4 Root Locus Methods -- 4.1 Introduction -- 4.2 Root-Locus Diagrams -- 4.2.1 Constructing a Root-Locus -- 4.2.2 Properties of the Root Locus -- 4.3 Root Locus Controller Design Methods -- 4.3.1 Selecting Gain from the Root Locus -- 4.3.2 Compensation by Adding or Moving Poles and Zeros -- 4.3.3 Phase Lag Controllers -- 4.3.4 Phase Lead Controllers -- 4.4 General Guidelines for Root Locus Controller Design.

4.5 Matlab for Root Locus Analysis and Controller Design -- 4.5.1 Constructing a Root Locus with Matlab -- 4.5.2 Use of Matlab for Designing a Phase Lag Controller -- 4.5.3 Use of Matlab for Designing a Phase Lead Controller -- References -- 5 Frequency Response Methods -- 5.1 Frequency Domain Analysis -- 5.2 The Nyquist Criterion -- 5.2.1 Nyquist Plots -- 5.2.2 General Nyquist Criterion -- 5.2.3 Stability Margins -- 5.3 Bode Diagrams -- 5.3.1 Constructing A Bode Diagram -- 5.4 Assessing Closed Loop Stability from the Bode Diagram -- 5.4.1 Time Delays -- 5.5 Dynamic Response from the Bode Diagram -- 5.5.1 Closed Loop Frequency Response -- 5.6 Steady-State Response from the Bode Diagram -- 5.7 Controller Design in the Frequency Domain -- 5.7.1 Phase Lag Controllers -- 5.7.2 Phase Lead Controllers -- 5.7.3 Lead-Lag or PID Controllers -- 5.7.4 Summary of Compensator Design in the Frequency Domain -- 5.8 Matlab for Frequency Response Analysis and Control Design -- 5.8.1 Nyquist Plots -- 5.8.2 Bode Plots -- 5.8.3 Matlab for Constructing A PD Controller -- References -- 6 Linear State Space Control Methods -- 6.1 Introduction -- 6.1.1 State Variables -- 6.2 Reachability/Controllability -- 6.2.1 Reachable Canonical Form -- 6.3 State Feedback -- 6.3.1 Where Do I Place the Poles for State Feedback? -- 6.3.2 Reachable Canonical Form for State Feedback -- 6.3.3 Eigenvalue Assignment -- 6.3.4 State Space Integral Control -- 6.3.5 Linear Quadratic Regulators -- 6.4 Observability -- 6.4.1 Observable Canonical Form -- 6.5 State Estimation -- 6.5.1 Where Do I Place the Observer Poles? -- 6.6 Separation Principle -- 6.7 Two Degree of Freedom Controllers -- 6.8 Linear Disturbance Observer Based Control -- 6.9 Matlab for State Space Controller and Observer Design -- References -- Part II Nonlinear Methods -- 7 Nonlinear Stability for Marine Vehicles -- 7.1 Introduction.

7.2 Stability of Time-Invariant Nonlinear Systems -- 7.2.1 Stability Definitions -- 7.2.2 Lyapunov's Second (Direct) Method -- 7.3 Invariant Set Theorem -- 7.4 Stability of Time-Varying Nonlinear Systems -- 7.5 Input-to-State Stability -- 7.6 Ultimate Boundedness -- 7.7 Practical Stability -- 7.8 Barbalat's Lemma -- 7.9 Summary -- References -- 8 Feedback Linearization -- 8.1 Introduction -- 8.2 Inverse Dynamics -- 8.2.1 Body-Fixed Frame Inverse Dynamics -- 8.2.2 NED Frame Inverse Dynamics -- 8.3 Fundamental Concepts in Feedback Linearization -- 8.3.1 Use of a Linearizing Control Law -- 8.3.2 Coordinate Transformations for Feedback Linearization -- 8.4 Structural Properties of Feedback-Linearizable Systems -- 8.4.1 Manifolds, Lie Derivatives, Lie Brackets and Vector Fields -- 8.4.2 Frobenius Theorem -- 8.5 Input-State Linearization -- 8.6 Input-Output Linearization -- 8.6.1 Relative Degree -- 8.6.2 The Normal Form and Zero Dynamics -- 8.6.3 Stabilization -- 8.6.4 Tracking -- References -- 9 Control of Underactuated Marine Vehicles -- 9.1 Introduction -- 9.2 The Terminology of Underactuated Vehicles -- 9.3 Motion Constraints -- 9.4 The Dynamics of Underactuated Marine Vehicles -- 9.4.1 The Dynamics of Underactuated Surface Vessels -- 9.5 Stabilization of Nonholonomic Vehicles -- 9.5.1 The Controllability of Nonlinear Systems -- 9.5.2 Stabilization of Nonholonomic Systems -- 9.5.3 Chained Forms -- 9.6 Path-Following Control for Surface Vessels --



9.6.1 Surge Speed Control -- 9.6.2 Control of the Cross-Track Error -- 9.6.3 Waypoint Switching -- 9.6.4 Other Path Following Approaches -- 9.7 Trajectory Tracking for Underactuated Surface Vessels -- 9.7.1 Point-to-Point Motion Planning -- 9.7.2 Desired Heading and Feedforward Control Inputs -- References -- 10 Integrator Backstepping and Related Techniques -- 10.1 Introduction -- 10.2 Integrator Backstepping.

10.2.1 A Simple 2-State SISO System -- 10.2.2 More General 2-State and 3-State SISO Systems -- 10.2.3 Generalized n-State SISO Systems: Recursive Backstepping -- 10.2.4 Vectorial Backstepping for MIMO Systems -- 10.3 Backstepping for Trajectory Tracking Marine Vehicles -- 10.3.1 Straight-Forward Backstepping -- 10.3.2 Passivity-Based Backstepping -- 10.3.3 Backstepping Implementation Issues -- 10.4 Augmented Integrator Backstepping -- 10.5 Dynamic Surface Control -- 10.5.1 DSC for Trajectory Tracking Marine Vehicles -- 10.6 Actuator Constraints -- 10.7 Nonlinear Disturbance Observer Based Control -- References -- 11 Adaptive Control -- 11.1 Introduction -- 11.2 Model Reference Adaptive Control -- 11.3 Adaptive SISO Control via Feedback Linearization -- 11.4 Adaptive MIMO Control via Feedback Linearization -- References -- 12 Sliding Mode Control -- 12.1 Introduction -- 12.2 Linear Feedback Control Under the Influence of Disturbances -- 12.3 First Order Sliding Mode Control -- 12.4 Chattering Mitigation -- 12.5 Equivalent Control -- 12.6 Summary of First Order Sliding Mode Control -- 12.7 Stabilization Versus Tracking -- 12.8 SISO Super-Twisting Sliding Mode Control -- 12.9 MIMO Super-Twisting Sliding Modes -- 12.10 Higher Order Sliding Mode Differentiation -- 12.11 An HOSM Controller-Observer -- 12.12 An HOSM Controller-Observer for Marine Vehicles -- References -- Index.