|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910484820103321 |
|
|
Titolo |
Similarity-based clustering : recent developments and biomedical applications / / Michael Biehl ... [et al.] (eds.) |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, : Springer-Verlag, c2009 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2009.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XI, 203 p.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in computer science ; ; 5400. Lecture notes in artificial intelligence |
|
|
|
|
|
|
|
|
Classificazione |
|
BIO 110f |
DAT 708f |
DAT 758f |
DAT 777f |
SS 4800 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Machine learning - Development |
Medical electronics |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
I: Dynamics of Similarity-Based Clustering -- Statistical Mechanics of On-line Learning -- Some Theoretical Aspects of the Neural Gas Vector Quantizer -- Immediate Reward Reinforcement Learning for Clustering and Topology Preserving Mappings -- II: Information Representation -- Advances in Feature Selection with Mutual Information -- Unleashing Pearson Correlation for Faithful Analysis of Biomedical Data -- Median Topographic Maps for Biomedical Data Sets -- Visualization of Structured Data via Generative Probabilistic Modeling -- III: Particular Challenges in Applications -- Learning Highly Structured Manifolds: Harnessing the Power of SOMs -- Estimation of Boar Sperm Status Using Intracellular Density Distribution in Grey Level Images -- HIV-1 Drug Resistance Prediction and Therapy Optimization: A Case Study for the Application of Classification and Clustering Methods. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
This book is the outcome of the Dagstuhl Seminar on "Similarity-Based Clustering" held at Dagstuhl Castle, Germany, in Spring 2007. In three chapters, the three fundamental aspects of a theoretical background, the representation of data and their connection to algorithms, and |
|
|
|
|