| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990002035280403321 |
|
|
Autore |
Hope, Fredric William |
|
|
Titolo |
The coleopterist's manual, containing the Lamellicorn insects of Linneus and Fabricius / F. W. Hope |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London : Henry G. Born, 1837 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Nota di contenuto |
|
1.: Lamellicorn insects of Linneus and Fabricius |
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910484809303321 |
|
|
Autore |
Le Jan Y (Yves), <1952-> |
|
|
Titolo |
Markov paths, loops and fields : ecole dete de Probabilites de Saint-Flour XXXVIII-2008 / / Yves Le Jan |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; Heidelberg, : Springer-Verlag, c2011 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2011.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (VIII, 124 p. 9 illus.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in mathematics ; ; 2026 |
|
|
|
|
|
|
Classificazione |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Markov processes |
Stochastic processes |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
1 Symmetric Markov processes on finite spaces -- 2 Loop measures -- 3 Geodesic loops -- 4 Poisson process of loops -- 5 The Gaussian free |
|
|
|
|
|
|
|
|
|
|
|
field -- 6 Energy variation and representations -- 7 Decompositions -- 8 Loop erasure and spanning trees -- 9 Reflection positivity -- 10 The case of general symmetric Markov processes. |
|
|
|
|
|
|
Sommario/riassunto |
|
The purpose of these notes is to explore some simple relations between Markovian path and loop measures, the Poissonian ensembles of loops they determine, their occupation fields, uniform spanning trees, determinants, and Gaussian Markov fields such as the free field. These relations are first studied in complete generality for the finite discrete setting, then partly generalized to specific examples in infinite and continuous spaces. |
|
|
|
|
|
|
|
| |