|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910484600003321 |
|
|
Titolo |
Multiple classifier systems : 9th international workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010 : proceedings / / Neamat El Gayar, Josef Kittler, Fabio Roli (eds.) |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, : Springer, c2010 |
|
|
|
|
|
|
|
ISBN |
|
1-280-38597-9 |
9786613563897 |
3-642-12127-6 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2010.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 328 p. 77 illus.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in computer science, , 0302-9743 ; ; 5997 |
LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
El GayarNeamat |
KittlerJosef <1946-> |
RoliFabio <1962-> |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Machine learning |
Neural networks (Computer science) |
Pattern perception |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Classifier Ensembles(I) -- Weighted Bagging for Graph Based One-Class Classifiers -- Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers -- New Feature Splitting Criteria for Co-training Using Genetic Algorithm Optimization -- Incremental Learning of New Classes in Unbalanced Datasets: Learn?+?+?.UDNC -- Tomographic Considerations in Ensemble Bias/Variance Decomposition -- Choosing Parameters for Random Subspace Ensembles for fMRI Classification -- Classifier Ensembles(II) -- An Experimental Study on Ensembles of Functional Trees -- Multiple Classifier Systems under Attack -- SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning -- Unsupervised Change-Detection in Retinal Images by a Multiple-Classifier Approach -- A Double Pruning Algorithm for Classification Ensembles -- Estimation of the Number of Clusters Using Multiple Clustering Validity Indices -- Classifier Diversity -- “Good” and |
|
|
|
|