1.

Record Nr.

UNINA9910484600003321

Titolo

Multiple classifier systems : 9th international workshop, MCS 2010, Cairo, Egypt, April 7-9, 2010 : proceedings / / Neamat El Gayar, Josef Kittler, Fabio Roli (eds.)

Pubbl/distr/stampa

Berlin, : Springer, c2010

ISBN

1-280-38597-9

9786613563897

3-642-12127-6

Edizione

[1st ed. 2010.]

Descrizione fisica

1 online resource (X, 328 p. 77 illus.)

Collana

Lecture notes in computer science, , 0302-9743 ; ; 5997

LNCS sublibrary. SL 6, Image processing, computer vision, pattern recognition, and graphics

Altri autori (Persone)

El GayarNeamat

KittlerJosef <1946->

RoliFabio <1962->

Disciplina

006.3

Soggetti

Machine learning

Neural networks (Computer science)

Pattern perception

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Classifier Ensembles(I) -- Weighted Bagging for Graph Based One-Class Classifiers -- Improving Multilabel Classification Performance by Using Ensemble of Multi-label Classifiers -- New Feature Splitting Criteria for Co-training Using Genetic Algorithm Optimization -- Incremental Learning of New Classes in Unbalanced Datasets: Learn?+?+?.UDNC -- Tomographic Considerations in Ensemble Bias/Variance Decomposition -- Choosing Parameters for Random Subspace Ensembles for fMRI Classification -- Classifier Ensembles(II) -- An Experimental Study on Ensembles of Functional Trees -- Multiple Classifier Systems under Attack -- SOCIAL: Self-Organizing ClassIfier ensemble for Adversarial Learning -- Unsupervised Change-Detection in Retinal Images by a Multiple-Classifier Approach -- A Double Pruning Algorithm for Classification Ensembles -- Estimation of the Number of Clusters Using Multiple Clustering Validity Indices -- Classifier Diversity -- “Good” and



“Bad” Diversity in Majority Vote Ensembles -- Multi-information Ensemble Diversity -- Classifier Selection -- Dynamic Selection of Ensembles of Classifiers Using Contextual Information -- Selecting Structural Base Classifiers for Graph-Based Multiple Classifier Systems -- Combining Multiple Kernels -- A Support Kernel Machine for Supervised Selective Combining of Diverse Pattern-Recognition Modalities -- Combining Multiple Kernels by Augmenting the Kernel Matrix -- Boosting and Bootstrapping -- Class-Separability Weighting and Bootstrapping in Error Correcting Output Code Ensembles -- Boosted Geometry-Based Ensembles -- Online Non-stationary Boosting -- Handwriting Recognition -- Combining Neural Networks to Improve Performance of Handwritten Keyword Spotting -- Combining Committee-Based Semi-supervised and Active Learning and Its Application to Handwritten Digits Recognition -- Using Diversity in Classifier Set Selection for Arabic Handwritten Recognition -- Applications -- Forecast Combination Strategies for Handling Structural Breaks for Time Series Forecasting -- A Multiple Classifier System for Classification of LIDAR Remote Sensing Data Using Multi-class SVM -- A Multi-Classifier System for Off-Line Signature Verification Based on Dissimilarity Representation -- A Multi-objective Sequential Ensemble for Cluster Structure Analysis and Visualization and Application to Gene Expression -- Combining 2D and 3D Features to Classify Protein Mutants in HeLa Cells -- An Experimental Comparison of Hierarchical Bayes and True Path Rule Ensembles for Protein Function Prediction -- Recognizing Combinations of Facial Action Units with Different Intensity Using a Mixture of Hidden Markov Models and Neural Network -- Invited Papers -- Some Thoughts at the Interface of Ensemble Methods and Feature Selection -- Multiple Classifier Systems for the Recogonition of Human Emotions -- Erratum -- Erratum.