1.

Record Nr.

UNINA990008664010403321

Titolo

Il territorio della media Valle del Tevere : arte, storia, natura ..

Pubbl/distr/stampa

Todi : Servizio Turistico associati, [200.]

Descrizione fisica

[24] p. : ill. ; 23 cm

Locazione

ILFGE

Collocazione

Misc.U-0011

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910339047303321

Autore

Erb Uwe

Titolo

Scientific and Technical Acronyms, Symbols, and Abbreviations

Pubbl/distr/stampa

[Place of publication not identified], : Wiley Interscience Imprint, 2001

ISBN

0-471-38802-5

Disciplina

501/.48

Soggetti

Science

Technology

Physical Sciences & Mathematics

Sciences - General

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph



3.

Record Nr.

UNINA9910484474003321

Autore

Alexander Bobenko

Titolo

Computational approach to Riemann surfaces / / Alexander Bobenko, Christian Klein

Pubbl/distr/stampa

New York, : Springer, 2011

ISBN

9783642174131

3642174132

Edizione

[1st ed. 2011.]

Descrizione fisica

1 online resource (XII, 264 p. 58 illus., 14 illus. in color.)

Collana

Lecture notes in mathematics ; ; 2013

Altri autori (Persone)

KleinChristian

Disciplina

515.93

Soggetti

Riemann surfaces

Mathematical analysis - Data processing

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Introduction to Compact Riemann Surfaces -- Computing with plane algebraic curves and Riemann surfaces: the algorithms of the Maple package “algcurves” -- Algebraic curves and Riemann surfaces in Matlab -- Computing Poincaré Theta Series for Schottky Groups -- Uniformizing real hyperelliptic M-curves using the Schottky-Klein prime function -- Numerical Schottky Uniformizations: Myrberg’s Opening Process -- Period Matrices of Polyhedral Surfaces -- On the spectral theory of the Laplacian on compact polyhedral surfaces of arbitrary genus.

Sommario/riassunto

This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory



is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first book on numerics of Riemann surfaces that reflects the progress made in this field during the last decade, and it contains original results. There are a growing number of applications that involve the evaluation of concrete characteristics of models analytically described in terms of Riemann surfaces. Many problem settings and computations in this volume are motivated by such concrete applications in geometry and mathematical physics.