1.

Record Nr.

UNINA9910484395603321

Autore

Pascucci Andrea

Titolo

Calcolo stocastico per la finanza / / by Andrea Pascucci

Pubbl/distr/stampa

Milano : , : Springer Milan : , : Imprint : Springer, , 2008

ISBN

88-470-0601-5

Edizione

[1st ed. 2008.]

Descrizione fisica

1 online resource (527 p.)

Collana

La Matematica per il 3+2, , 2038-5722

Disciplina

332.645301515353

500

Soggetti

Finance, Public

Mathematical analysis

Analysis (Mathematics)

Applied mathematics

Engineering mathematics

Economics, Mathematical

Differential equations, Partial

Mathematical models

Public Economics

Analysis

Applications of Mathematics

Quantitative Finance

Partial Differential Equations

Mathematical Modeling and Industrial Mathematics

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Derivati e arbitraggi -- Elementi di probabilità ed equazione del calore -- Modelli di mercato a tempo discreto -- Processi stocastici a tempo continuo -- Integrale stocastico -- Equazioni paraboliche a coefficienti variabili: unicità -- Modello di Black&Scholes -- Equazioni paraboliche a coefficienti variabili: esistenza -- Equazioni differenziali stocastiche -- Modelli di mercato a tempo continuo -- Opzioni Americane -- Metodi numerici -- Introduzione al calcolo di Malliavin.

Sommario/riassunto

Questo testo propone un’introduzione ai metodi matematici,



probabilistici e numerici che sono alla base dei modelli per la valutazione degli strumenti derivati, come opzioni e futures, trattati nei moderni mercati finanziari. Il libro è rivolto a lettori con formazione scientifica, desiderosi di sviluppare competenze nell’ambito del calcolo stocastico applicato alla finanza. La prima parte è dedicata ad una presentazione dei modelli per i mercati in tempo discreto in cui le idee sui principi di valutazione sono illustrate in modo semplice e intuitivo. Contemporaneamente sono forniti gli elementi di base della teoria della probabilità. Successivamente la teoria dell’integrazione e del calcolo stocastico in tempo continuo viene sviluppata in maniera rigorosa ma, per quanto possibile, snella. Viene posta una particolare enfasi sui legami fra la teoria delle equazioni differenziali stocastiche e degli operatori alle derivate parziali di evoluzione. Il classico modello di Black&Scholes viene analizzato in dettaglio sia con un approccio analitico, sia nell’ambito della teoria delle martingale. La trattazione punta ad essere chiara e rigorosa piuttosto che onnicomprensiva, proponendo una comprensione approfondita del problema della valutazione e copertura di opzioni Call e Put come punto di partenza per l’affronto di strumenti derivati esotici. Data la loro importanza vengono studiate le opzioni di tipo Americano e alcuni tra i più noti derivati "path-dependent" come le opzioni Asiatiche e con barriera. Un capitolo è dedicato ad illustrare i più noti modelli di volatilità stocastica che generalizzano l’analisi di Black&Scholes. Infine la teoria precedente è accompagnata dalla descrizione dei principali metodi numerici per la valutazione di opzioni: il metodo Monte Carlo, gli alberi binomiali, i metodi alle differenze finite.