1.

Record Nr.

UNISA990002100630203316

Titolo

Changing maritime transport / a cura di Calogero Muscara, Mario Soricillo, Adalberto Vallega

Pubbl/distr/stampa

Napoli : Istituto Universitario Navale, Istituto di geografia economica, 1982

Descrizione fisica

2 v. ; 24 cm

Disciplina

387

Collocazione

387 CHA 1/1 (IG XIV 94/I)

387 CHA 1/2 (IG XIV 94/II)

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Atti del congresso tenuto a Napoli nel 1981 dall'IGU-Working Group on Geography of Transport

2.

Record Nr.

UNINA9910819250603321

Autore

Hillen Thomas <1966->

Titolo

Partial differential equations : theory and completely solved problems / / Thomas Hillen, I. Ed Leonard, Henry van Roessel

Pubbl/distr/stampa

Hoboken, New Jersey : , : Wiley, , 2012

©2012

ISBN

1-118-44146-X

Edizione

[1st ed.]

Descrizione fisica

1 online resource (694 p.)

Classificazione

MAT007000

Disciplina

515/.353

Soggetti

Differential equations, Partial

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Description based upon print version of record.

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Cover; Title Page ; Copyright; Contents ; Preface ; PART I: THEORY  ; Chapter 1: Introduction ; 1.1 Partial Differential Equations ; 11.2



Classification of Second-order Linear Pdes ; 1.3 Side Conditions ; 1.3.1 Boundary Conditions on an Interval ; 1.4 Linear Pdes ; 1.4.1 Principle of Superposition ; 1.5 Steady-state and Equilibrium Solutions ; 1.6 First Example for Separation of Variables ; 1.7 Derivation of the Diffusion Equation ; 1.7.1 Boundary Conditions ; 1.8 Derivation of the Heat Equation ; 1.9 Derivation of the Wave Equation ; 1.10 Examples of Laplace''s Equation ; 1.11 Summary

1.11.1 Problems and Notes Chapter 2: Fourier Series ; 2.1 Piecewise Continuous Functions ; 2.2 Even, Odd, and Periodic Functions ; 2.3 Orthogonal Functions ; 2.4 Fourier Series ; 2.4.1 Fourier Sine and Cosine Series ; 2.5 Convergence of Fourier Series ; 2.5.1 Gibbs'' Phenomenon ; 2.6 Operations on Fourier Series ; 2.7 Mean Square Error ; 2.8 Complex Fourier Series ; 2.9 Summary ; 2.9.1 Problems and Notes ; Chapter 3: Separation of Variables ; 3.1 Homogeneous Equations ; 3.1.1 General Linear Homogeneous Equations ; 3.1.2 Limitations of the Method of Separation of Variables

3.2 Nonhomogeneous Equations 3.2.1 Method of Eigenfunction Expansions ; 3.3 Summary ; 3.3.1 Problems and Notes ; Chapter 4: Sturm Liouville Theory ; 4.1 Formulation ; 4.2 Properties of Sturm-liouville Problems ; 4.3 Eigenfunction Expansions ; 4.4 Rayleigh Quotient ; 4.5 Summary ; 4.5.1 Problems and Notes ; Chapter 5: Heat, Wave, and Laplace Equations ; 5.1 One-dimensional Heat Equation ; 5.2 Two-dimensional Heat Equation ; 5.3 One-dimensional Wave Equation ; 5.3.1 d'' Alembert''s Solution ; 5.4 Laplace''s Equation ; 5.4.1 Potential in a Rectangle ; 5.5 Maximum Principle

5.6 Two-dimensional Wave Equation 5.7 Eigenfunctions in Two Dimensions ; 5.8 Summary ; 5.8.1 Problems and Notes ; Chapter 6: Polar Coordinates ; 6.1 Interior Dirichlet Problem for a Disk ; 6.1.1 Poisson Integral Formula ; 6.2 Vibrating Circular Membrane ; 6.3 Bessel''s Equation ; 6.3.1 Series Solutions of Odes ; 6.4 Bessel Functions ; 6.4.1 Properties of Bessel Functions ; 6.4.2 Integral Representation of Bessel Functions ; 6.5 Fourier-bessel Series ; 6.6 Solution to the Vibrating Membrane Problem ; 6.7 Summary ; 6.7.1 Problems and Notes ; Chapter 7: Spherical Coordinates

7.1 Spherical Coordinates 7.1.1 Derivation of the Laplacian ; 7.2 Legendre''s Equation ; 7.3 Legendre Functions ; 7.3.1 Legendre Polynomials ; 7.3.2 Fourier-legendre Series ; 7.3.3 Legendre Functions of the Second Kind ; 7.3.4 Associated Legendre Functions ; 7.4 Spherical Bessel Functions ; 7.5 Interior Dirichlet Problem for a Sphere ; 7.6 Summary ; 7.6.1 Problems and Notes ; Chapter 8: Fourier Transforms ; 8.1 Fourier Integrals ; 8.1.1 Fourier Integral Representation ; 8.1.2 Examples ; 8.1.3 Fourier Sine and Cosine Integral Representations ; 8.1.4 Proof of Fourier''s Theorem

8.2 Fourier Transforms

Sommario/riassunto

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems  Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences.  The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin



3.

Record Nr.

UNINA9910484203703321

Titolo

Biologically Inspired Cognitive Architectures 2019 : Proceedings of the Tenth Annual Meeting of the BICA Society / / edited by Alexei V. Samsonovich

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020

ISBN

3-030-25719-3

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (636 pages)

Collana

Advances in Intelligent Systems and Computing, , 2194-5365 ; ; 948

Disciplina

006

006.38

Soggetti

Computational intelligence

Artificial intelligence

Neurosciences

Cognitive psychology

Biometric identification

Computational Intelligence

Artificial Intelligence

Neuroscience

Cognitive Psychology

Biometrics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Sommario/riassunto

The book focuses on original approaches intended to support the development of biologically inspired cognitive architectures. It bridges together different disciplines, from classical artificial intelligence to linguistics, from neuro- and social sciences to design and creativity, among others. The chapters, based on contributions presented at the Tenth Annual Meeting of the BICA Society, held in on August 15-18, 2019, in Seattle, WA, USA, discuss emerging methods, theories and ideas towards the realization of general-purpose humanlike artificial intelligence or fostering a better understanding of the ways the human



mind works. All in all, the book provides engineers, mathematicians, psychologists, computer scientists and other experts with a timely snapshot of recent research and a source of inspiration for future developments in the broadly intended areas of artificial intelligence and biological inspiration.