1.

Record Nr.

UNINA9910484132603321

Autore

Siegert Wolfgang

Titolo

Local Lyapunov exponents : sublimiting growth rates of linear random differential equations / / Wolfgang Siegert

Pubbl/distr/stampa

Berlin, : Springer, 2009

ISBN

3-540-85964-0

Edizione

[1st ed. 2009.]

Descrizione fisica

1 online resource (IX, 254 p.)

Collana

Lecture notes in mathematics ; ; 1963

Classificazione

MAT 606f

SI 850

60F1060H1037H1534F0434C1158J3591B2837N1092D1592D25

Disciplina

515.35

Soggetti

Lyapunov exponents

Differential equations

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references (p. 239-251) and index.

Nota di contenuto

Linear differential systems with parameter excitation -- Locality and time scales of the underlying non-degenerate stochastic system: Freidlin-Wentzell theory -- Exit probabilities for degenerate systems -- Local Lyapunov exponents.

Sommario/riassunto

Establishing a new concept of local Lyapunov exponents the author brings together two separate theories, namely Lyapunov exponents and the theory of large deviations. Specifically, a linear differential system is considered which is controlled by a stochastic process that during a suitable noise-intensity-dependent time is trapped near one of its so-called metastable states. The local Lyapunov exponent is then introduced as the exponential growth rate of the linear system on this time scale. Unlike classical Lyapunov exponents, which involve a limit as time increases to infinity in a fixed system, here the system itself changes as the noise intensity converges, too.