1.

Record Nr.

UNINA9910484006803321

Titolo

Quantum many body systems : Cetraro, Italy 2010 / / Vincent Rivasseau ... [et al.] ; editors: Alessandro Giuliani, Vieri Mastropietro, Jakob Yngvason

Pubbl/distr/stampa

Berlin ; ; New York, : Springer Verlag, 2012

ISBN

3-642-29511-8

Edizione

[1st ed. 2012.]

Descrizione fisica

1 online resource (XIII, 180 p. 11 illus., 1 illus. in color.)

Collana

Lecture notes in mathematics ; ; 2051

Classificazione

82B1081V7082B2882B44

Altri autori (Persone)

RivasseauVincent <1955->

SeiringerRobert

SolovejJan Philip

SpencerThomas <1946->

GiulianiAlessandro

MastropietroVieri

Jakob Yngvason

Disciplina

530.120151

Soggetti

Many-body problem

Mathematics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Additional authors: Robert Seiringer; Jan Philip Solovej; Thomas Spencer.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

 1.Introduction to the Renormalization Group with Applications to Non-Relativistic Quantum Electron Gases. Vincent Rivasseau -- 2.Cold Quantum Gases and Bose-Einstein Condensation. Robert Seiringer -- 3. Quantum Coulomb gases. Jan Philip Solovey -- 4. SUSY Statistical Mechanics and Random Band Matrices. Thomas Spencer.

Sommario/riassunto

The book is based on the lectures given at the CIME school "Quantum many body systems" held in the summer of 2010. It provides a tutorial introduction to recent advances in the mathematics of interacting systems, written by four leading experts in the field: V. Rivasseau illustrates the applications of constructive Quantum Field Theory to 2D interacting electrons and their relation to quantum gravity; R. Seiringer describes a proof of Bose-Einstein condensation in the Gross-Pitaevski limit and explains the effects of rotating traps and the emergence of lattices of quantized vortices; J.-P. Solovej gives an introduction to the



theory of quantum Coulomb systems and to the functional analytic methods used to prove their thermodynamic stability; finally, T. Spencer explains the supersymmetric approach to Anderson localization and its relation to the theory of random matrices. All the lectures are characterized by their mathematical rigor combined with physical insights.