|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910483950203321 |
|
|
Autore |
Bogdan Krzysztof |
|
|
Titolo |
Potential analysis of stable processes and its extensions / / Krzysztof Bogdan, 6 others, volume editors Piotr Graczyk, Andrzej Stos |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Germany : , : Springer, , [2009] |
|
©2009 |
|
|
|
|
|
|
|
|
|
ISBN |
|
1-282-65579-5 |
9786612655791 |
3-642-02141-7 |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2009.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (200 p.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in mathematics ; ; 1980 |
|
|
|
|
|
|
Classificazione |
|
60J4560G5260J5060J7531B2531C0531C3531C25 |
MAT 315f |
MAT 605f |
MAT 607f |
SI 850 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Functional analysis |
Potential theory (Mathematics) |
Analyse fonctionnelle |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (pages [177]-183) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Boundary Potential Theory for Schr#x00F6;dinger Operators Based on Fractional Laplacian -- Nontangential Convergence for #x03B1;-harmonic Functions -- Eigenvalues and Eigenfunctions for Stable Processes -- Potential Theory of Subordinate Brownian Motion. |
|
|
|
|
|
|
|
|
Sommario/riassunto |
|
Stable Lévy processes and related stochastic processes play an important role in stochastic modelling in applied sciences, in particular in financial mathematics. This book is about the potential theory of stable stochastic processes. It also deals with related topics, such as the subordinate Brownian motions (including the relativistic process) and Feynman–Kac semigroups generated by certain Schroedinger operators. The authors focus on classes of stable and related processes that contain the Brownian motion as a special case. This is the first book devoted to the probabilistic potential theory of stable stochastic |
|
|
|
|