1.

Record Nr.

UNINA9910483881403321

Autore

Salsa S

Titolo

Equazioni a derivate parziali : Complementi ed esercizi / / by S. Salsa, G. Verzini

Pubbl/distr/stampa

Milano : , : Springer Milan : , : Imprint : Springer, , 2005

ISBN

88-470-0383-0

Edizione

[1st ed. 2005.]

Descrizione fisica

1 online resource (412 p.)

Collana

La Matematica per il 3+2, , 2038-5722

Disciplina

620

620/.001

620/.001/51

Soggetti

Mathematical analysis

Analysis (Mathematics)

Functional analysis

Differential equations, Partial

Applied mathematics

Engineering mathematics

Analysis

Functional Analysis

Partial Differential Equations

Applications of Mathematics

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Textbooks for undergraduates.

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

Diffusione -- Equazione di Laplace -- Equazioni del primo ordine -- Onde -- Analisi funzionale -- Formulazioni variazionali.

Sommario/riassunto

La presente raccolta di problemi ed esercizi nasce dall'esperienza maturata durante il corso di Equazioni a Derivate Parziali (EDP), tenuto nell'ambito delle lauree di primo e secondo livello presso il Politecnico di Milano. Il volume è diviso in due parti; nei primi quattro capitoli l'obiettivo è l'uso di tecniche classiche, come la separazione delle variabili, il principio di massimo o le trasformate di Laplace e Fourier, per risolvere problemi di diffusione, trasporto e vibrazione. Il quinto capitolo invita a familiarizzare con i risultati di base negli spazi di Hilbert, nella teoria delle distribuzioni (o funzioni generalizzate) di



Schwartz e in quella degli spazi di Sobolev più comuni. Il sesto ed ultimo capitolo riguarda la formulazione variazionale o debole dei più importanti problemi iniziali e/o al bordo per equazioni ellittiche e di evoluzione. L'introduzione ad ogni capitolo contiene una sintesi degli strumenti teorici più utilizzati. Gli esercizi sono suddivisi in due gruppi: i problemi risolti, che costituiscono dei modelli metodologici di riferimento, la cui soluzione è presentata in dettaglio; gli esercizi proposti, che il lettore è invitato ad affrontare autonomamente. Anche di questi è presentata la soluzione, a volte in forma sintetica. Il testo è rivolto prevalentemente a studenti di Ingegneria, Fisica e Matematica, ma costituisce un utile punto di riferimento anche per coloro che desiderano approfondire alcuni aspetti teorici e modellistici di questa importante disciplina.