1.

Record Nr.

UNINA9910483811703321

Titolo

Deep Learning and Data Labeling for Medical Applications : First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings / / edited by Gustavo Carneiro, Diana Mateus, Loïc Peter, Andrew Bradley, João Manuel R. S. Tavares, Vasileios Belagiannis, João Paulo Papa, Jacinto C. Nascimento, Marco Loog, Zhi Lu, Jaime S. Cardoso, Julien Cornebise

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2016

ISBN

3-319-46976-2

Edizione

[1st ed. 2016.]

Descrizione fisica

1 online resource (XIII, 280 p. 115 illus.)

Collana

Image Processing, Computer Vision, Pattern Recognition, and Graphics ; ; 10008

Disciplina

610.285

Soggetti

Optical data processing

Pattern recognition

Artificial intelligence

Computer graphics

Health informatics

Image Processing and Computer Vision

Pattern Recognition

Artificial Intelligence

Computer Graphics

Health Informatics

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Includes index.

Nota di contenuto

Active learning -- Semi-supervised learning -- Reinforcement learning -- Domain adaptation and transfer learning -- Crowd-sourcing annotations and fusion of labels from different sources -- Data augmentation -- Modelling of label uncertainty -- Visualization and human-computer interaction -- Image description -- Medical imaging-based diagnosis -- Medical signal-based diagnosis -- Medical image reconstruction and model selection using deep learning techniques --



Meta-heuristic techniques for fine-tuning -- Parameter in deep learning-based architectures -- Applications based on deep learning techniques.

Sommario/riassunto

This book constitutes the refereed proceedings of two workshops held at the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, in Athens, Greece, in October 2016: the First Workshop on Large-Scale Annotation of Biomedical Data and Expert Label Synthesis, LABELS 2016, and the Second International Workshop on Deep Learning in Medical Image Analysis, DLMIA 2016. The 28 revised regular papers presented in this book were carefully reviewed and selected from a total of 52 submissions. The 7 papers selected for LABELS deal with topics from the following fields: crowd-sourcing methods; active learning; transfer learning; semi-supervised learning; and modeling of label uncertainty. The 21 papers selected for DLMIA span a wide range of topics such as image description; medical imaging-based diagnosis; medical signal-based diagnosis; medical image reconstruction and model selection using deep learning techniques; meta-heuristic techniques for fine-tuning parameter in deep learning-based architectures; and applications based on deep learning techniques.