1.

Record Nr.

UNINA990006548950403321

Autore

Fieldhouse, David Kenneth <1925- >

Titolo

Black Africa : 1945-80 : economic decolonization & arrested development / D. K. Fieldhouse

Pubbl/distr/stampa

London : Unwin Hyman, 1989

Descrizione fisica

XX, 260 p. ; 21 cm

Disciplina

338.967

Locazione

FSPBC

Collocazione

XIV E 3581

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia

2.

Record Nr.

UNINA9910483749203321

Autore

Flandoli Franco

Titolo

Random Perturbation of PDEs and Fluid Dynamic Models : École d’Été de Probabilités de Saint-Flour XL – 2010 / / by Franco Flandoli

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011

ISBN

9783642182310

3642182313

Edizione

[1st ed. 2011.]

Descrizione fisica

1 online resource (X, 182 p. 10 illus.)

Collana

École d'Été de Probabilités de Saint-Flour ; ; 2015

Classificazione

60H1560H1060J6535R6035Q3535B4476B03

Disciplina

515.392

Soggetti

Probabilities

Probability Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di bibliografia

Includes bibliographical references.

Nota di contenuto

1. Introduction to Uniqueness and Blow-up -- 2. Regularization by Additive Noise -- 3. Dyadic Models -- 4. Transport Equation -- 5.



Other Models. Uniqueness and Singularities.

Sommario/riassunto

This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices.