| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA990006548950403321 |
|
|
Autore |
Fieldhouse, David Kenneth <1925- > |
|
|
Titolo |
Black Africa : 1945-80 : economic decolonization & arrested development / D. K. Fieldhouse |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
London : Unwin Hyman, 1989 |
|
|
|
|
|
|
|
Descrizione fisica |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Locazione |
|
|
|
|
|
|
Collocazione |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
2. |
Record Nr. |
UNINA9910483749203321 |
|
|
Autore |
Flandoli Franco |
|
|
Titolo |
Random Perturbation of PDEs and Fluid Dynamic Models : École d’Été de Probabilités de Saint-Flour XL – 2010 / / by Franco Flandoli |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2011 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
|
|
Edizione |
[1st ed. 2011.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (X, 182 p. 10 illus.) |
|
|
|
|
|
|
Collana |
|
École d'Été de Probabilités de Saint-Flour ; ; 2015 |
|
|
|
|
|
|
Classificazione |
|
60H1560H1060J6535R6035Q3535B4476B03 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Probabilities |
Probability Theory |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
1. Introduction to Uniqueness and Blow-up -- 2. Regularization by Additive Noise -- 3. Dyadic Models -- 4. Transport Equation -- 5. |
|
|
|
|
|
|
|
|
|
|
|
Other Models. Uniqueness and Singularities. |
|
|
|
|
|
|
Sommario/riassunto |
|
This volume deals with the random perturbation of PDEs which lack well-posedness, mainly because of their non-uniqueness, in some cases because of blow-up. The aim is to show that noise may restore uniqueness or prevent blow-up. This is not a general or easy-to-apply rule, and the theory presented in the book is in fact a series of examples with a few unifying ideas. The role of additive and bilinear multiplicative noise is described and a variety of examples are included, from abstract parabolic evolution equations with non-Lipschitz nonlinearities to particular fluid dynamic models, like the dyadic model, linear transport equations and motion of point vortices. |
|
|
|
|
|
|
|
| |