|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910483748103321 |
|
|
Titolo |
Deterministic and statistical methods in machine learning : first international workshop, Sheffield, UK, September 7-10, 2004 : revised lectures / / Joab Winkler, Mahesan Niranjan, Neil Lawrence (eds.) |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : Springer, c2005 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Edizione |
[1st ed. 2005.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (VIII, 341 p.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in computer science. Lecture notes in artificial intelligence, , 0302-9743 ; ; 3635 |
|
|
|
|
|
|
|
|
Altri autori (Persone) |
|
WinklerJoab |
NiranjanMahesan |
LawrenceNeil (Neil D.) |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Machine learning |
Machine learning - Statistical methods |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Sheffield Machine Learning Workshop"--Pref. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Object Recognition via Local Patch Labelling -- Multi Channel Sequence Processing -- Bayesian Kernel Learning Methods for Parametric Accelerated Life Survival Analysis -- Extensions of the Informative Vector Machine -- Efficient Communication by Breathing -- Guiding Local Regression Using Visualisation -- Transformations of Gaussian Process Priors -- Kernel Based Learning Methods: Regularization Networks and RBF Networks -- Redundant Bit Vectors for Quickly Searching High-Dimensional Regions -- Bayesian Independent Component Analysis with Prior Constraints: An Application in Biosignal Analysis -- Ensemble Algorithms for Feature Selection -- Can Gaussian Process Regression Be Made Robust Against Model Mismatch? -- Understanding Gaussian Process Regression Using the Equivalent Kernel -- Integrating Binding Site Predictions Using Non-linear Classification Methods -- Support Vector Machine to Synthesise Kernels -- Appropriate Kernel Functions for Support Vector Machine Learning with Sequences of Symbolic Data -- Variational Bayes Estimation of Mixing Coefficients -- A Comparison of Condition Numbers for the Full Rank Least Squares Problem -- SVM Based Learning System for Information Extraction. |
|
|
|
|
|
|
|