1.

Record Nr.

UNINA990004047800403321

Autore

Di Ciommo, Enrica

Titolo

La nazione possibile : Mezzogiorno e questione nazionale nel 1848 / Enrica Di Ciommo

Pubbl/distr/stampa

Milano, : FrancoAngeli, c1993

ISBN

88-204-7837-4

Descrizione fisica

376 p. ; 22 cm

Collana

Storia ; 167

Disciplina

945.7

Locazione

DECTS

FLFBC

SDI

DARPU

Collocazione

N03.262

945.7 DIC 1

945.7083 DICE 01

SDI-KH 798

282 SEZ. ANDRIELLO

Lingua di pubblicazione

Italiano

Formato

Materiale a stampa

Livello bibliografico

Monografia



2.

Record Nr.

UNINA9910483493103321

Autore

Gustafsson Björn <1947->

Titolo

Laplacian Growth on Branched Riemann Surfaces / / by Björn Gustafsson, Yu-Lin Lin

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2021

ISBN

3-030-69863-7

Edizione

[1st ed. 2021.]

Descrizione fisica

1 online resource (163 pages) : illustrations

Collana

Lecture Notes in Mathematics, , 1617-9692 ; ; 2287

Disciplina

532.053

Soggetti

Functions of complex variables

Differential equations

Potential theory (Mathematics)

Mathematical physics

Soft condensed matter

Functions of a Complex Variable

Differential Equations

Potential Theory

Mathematical Methods in Physics

Fluids

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Intro -- Preface -- Contents -- 1 Introduction -- 1.1 General Background -- 1.2 Loss of Univalence, Several Scenarios -- 1.3 On the Construction of a Branched Riemann Surface -- 1.4 Moment Coordinates and the String Equation -- 1.5 Outlooks to Physics -- 1.6 Acknowledgements -- 2 The Polubarinova-Galin and Löwner-Kufarev Equations -- 2.1 Basic Set Up in the Univalent Case -- 2.2 Dynamics and Subordination -- 2.3 The Polubarinova-Galin Versus the Löwner-Kufarev Equation -- 3 Weak Solutions and Balayage -- 3.1 Weak Formulation of the Polubarinova-Galin Equation -- 3.2 Weak Solutions in Terms of Balayage -- 3.3 Inverse Balayage -- 3.4 More General Laplacian Evolutions -- 3.5 Regularity of the Boundary via the Exponential Transform -- 3.6 The Resultant and the Elimination Function -- 4 Weak and Strong Solutions on Riemann Surfaces -- 4.1



Laplacian Growth on Manifolds -- 4.2 Examples -- 4.3 The Riemann Surface Solution Pulled Back to the Unit Disk -- 4.4 Compatibility Between Balayage and Covering Maps -- 5 Global Simply Connected Weak Solutions -- 5.1 Statement of Result, and Two Lemmas -- 5.2 Statement of Conjecture, and Partial Proofs -- 5.3 Discussion -- 6 General Structure of Rational Solutions -- 6.1 Introduction -- 6.2 Direct Approach -- 6.3 Approach via Quadrature Identities -- 7 Examples -- 7.1 Examples: Several Evolutions of a Cardioid -- 7.1.1 The Univalent Solution -- 7.1.2 A Non-univalent Solution of the Polubarinova-Galin Equation -- 7.1.3 A Non-univalent Solution of the Löwner-Kufarev Equation -- 7.1.4 A Solution for the Suction Case -- 7.2 Injection Versus Suction in a Riemann Surface Setting -- 8 Moment Coordinates and the String Equation -- 8.1 The Polubarinova-Galin Equation as a String Equation -- 8.2 The String Equation for Univalent Conformal Maps -- 8.3 Intuition and Physical Interpretation in the Non-univalent Case.

8.4 An Example -- 8.4.1 General Case -- 8.4.2 First Subcase -- 8.4.3 Second Subcase -- 8.5 Moment Evolutions in Terms of Poisson Brackets -- 9 Hamiltonian Descriptions of General Laplacian Evolutions -- 9.1 Lie Derivatives and Interior Multiplication -- 9.2 Laplacian Evolutions -- 9.3 Schwarz Potentials and Generating Functions -- 9.4 Multitime Hamiltonians -- 10 The String Equation for Some Rational Functions -- 10.1 The String Equation on Quadrature Riemann Surfaces -- 10.2 The String Equation for Polynomials -- 10.3 Evolution of a Third Degree Polynomial with RealCoefficients -- 10.4 An Example by Ullemar -- Glossary -- References -- Index.

Sommario/riassunto

This book studies solutions of the Polubarinova–Galin and Löwner–Kufarev equations, which describe the evolution of a viscous fluid (Hele-Shaw) blob, after the time when these solutions have lost their physical meaning due to loss of univalence of the mapping function involved. When the mapping function is no longer locally univalent interesting phase transitions take place, leading to structural changes in the data of the solution, for example new zeros and poles in the case of rational maps. This topic intersects with several areas, including mathematical physics, potential theory and complex analysis. The text will be valuable to researchers and doctoral students interested in fluid dynamics, integrable systems, and conformal field theory.