1.

Record Nr.

UNISANNIOBVEE093645

Autore

Torsellini, Orazio <1545-1599>

Titolo

Particulae Latinae orationis ab Horatio Tursellino collectae, nunc vero ex aliis scriptoribus, de quibus in praefatione, purgatae, & auctae, & ad usum Seminarii Patavini accommodatae

Pubbl/distr/stampa

Patavii : ex typographia Seminarii, 1765

Descrizione fisica

[2], 473, [3] p. ; 12°

Collocazione

ARF. ANTICO 1700/                   1014

Lingua di pubblicazione

Latino

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Front. stampato in rosso e nero

Fregio xilogr. sul front

Segn.: π1 a¹² B-T¹² V¹⁰

La c. a1r contiene l'occhietto

La c. a2r contiene front. dell'edizione stampata a Padova da Giovanni Ricci nel 1744

A c. a3r inizia la prefazione di Jacopo Facciolati



2.

Record Nr.

UNINA9910703035403321

Titolo

Healthy planet, healthy people [[electronic resource] ] : global warming and public health : hearing before the Select Committee on Energy Independence and Global Warming, House of Representatives, One Hundred Tenth Congress, second session, April 9, 2008

Pubbl/distr/stampa

Washington : , : U.S. G.P.O., , 2010

Descrizione fisica

1 online resource (iii, 209 pages) : illustrations

Soggetti

Global warming - Health aspects - United States

Climatic changes - Health aspects - United States

Greenhouse effect, Atmospheric - Health aspects - United States

Environmentally induced diseases - United States

Public health - Environmental aspects

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on Jan. 12, 2011).

"Serial no. 110-32."

Nota di bibliografia

Includes bibliographical references.



3.

Record Nr.

UNINA9910483326403321

Autore

Schwarz Jason S.

Titolo

Python for Marketing Research and Analytics / / by Jason S. Schwarz, Chris Chapman, Elea McDonnell Feit

Pubbl/distr/stampa

Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020

ISBN

3-030-49720-8

Edizione

[1st ed. 2020.]

Descrizione fisica

1 online resource (XI, 272 p. 90 illus., 79 illus. in color.)

Disciplina

519.5

Soggetti

Mathematical statistics - Data processing

Statistics

Social sciences - Statistical methods

Statistics and Computing

Statistics in Business, Management, Economics, Finance, Insurance

Statistics in Social Sciences, Humanities, Law, Education, Behavorial Sciences, Public Policy

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Part I: Basics of Python -- Chapter 1: Welcome to Python -- Chapter 2: The Python Language -- Part II Fundamentals of Data Analysis -- Chapter 3: Describing Data -- Chapter 4: Relationships Between Continuous Variables -- Chapter 5: Comparing Groups: Tables and Visualizations -- Chapter 6: Comparing Groups: Statistical Tests -- Chapter 7: Identifying Drivers of Outcomes: Linear Models -- Chapter 8: Additional Linear Modeling Topics -- Part III Advanced data analysis -- Chapter 9: Reducing Data Complexity -- Chapter 10: Segmentation: Unsupervised Clustering Methods for Exploring Subpopulations -- Chapter 11: Classification: Assigning observations to known categories -- Chapter 12: Conclusion -- Index.

Sommario/riassunto

This book provides an introduction to quantitative marketing with Python. The book presents a hands-on approach to using Python for real marketing questions, organized by key topic areas. Following the Python scientific computing movement toward reproducible research, the book presents all analyses in Colab notebooks, which integrate



code, figures, tables, and annotation in a single file. The code notebooks for each chapter may be copied, adapted, and reused in one's own analyses. The book also introduces the usage of machine learning predictive models using the Python sklearn package in the context of marketing research. This book is designed for three groups of readers: experienced marketing researchers who wish to learn to program in Python, coming from tools and languages such as R, SAS, or SPSS; analysts or students who already program in Python and wish to learn about marketing applications; and undergraduate or graduate marketing students with little or no programming background. It presumes only an introductory level of familiarity with formal statistics and contains a minimum of mathematics. .