1.

Record Nr.

UNINA9910701977003321

Titolo

Defense health care [[electronic resource] ] : applying key management practices should help achieve efficiencies within the military health system : report to Congressional Committees

Pubbl/distr/stampa

[Washington, D.C.] : , : U.S. Govt. Accountability Office, , [2012]

Descrizione fisica

1 online resource (ii, 42 pages) : illustrations

Soggetti

United States Armed Forces Medical care Costs

United States Armed Forces Medical care Management Evaluation

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Title from title screen (viewed on Apr. 12, 2012).

"April 2012."

"GAO-12-224."

Nota di bibliografia

Includes bibliographical references.



2.

Record Nr.

UNINA9910483277003321

Autore

Mikhaĭlov Roman

Titolo

Lower central and dimension series of groups / / Roman Mikhailov, Inder Bir Singh Passi

Pubbl/distr/stampa

Berlin, : Springer, 2009

ISBN

9783540858188

3540858180

Edizione

[1st ed. 2009.]

Descrizione fisica

1 online resource (XXII, 352 p.)

Collana

Lecture notes in mathematics, , 0075-8434 ; ; 1952

Classificazione

510

MAT 200f

SI 850

Altri autori (Persone)

PassiInder Bir S. <1939->

Disciplina

512.6

Soggetti

Group theory

Algebra, Homological

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

"ISSN electronic edition 1617-9692."

Nota di bibliografia

Includes bibliographical references and index.

Nota di contenuto

Lower Central Series -- Dimension Subgroups -- Derived Series -- Augmentation Powers -- Homotopical Aspects -- Miscellanea.

Sommario/riassunto

A fundamental object of study in group theory is the lower central series of groups. Understanding its relationship with the dimension series, which consists of the subgroups determined by the augmentation powers, is a challenging task. This monograph presents an exposition of different methods for investigating this relationship. In addition to group theorists, the results are also of interest to topologists and number theorists. The approach is mainly combinatorial and homological. A novel feature is an exposition of simplicial methods for the study of problems in group theory.