|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910483221703321 |
|
|
Autore |
Neuberger J. W (John W.), <1934-> |
|
|
Titolo |
Sobolev gradients and differential equations / / J.W. Neuberger |
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Berlin ; ; New York, : Springer, 2009 |
|
|
|
|
|
|
|
ISBN |
|
1-280-39157-X |
9786613569493 |
3-642-04041-1 |
|
|
|
|
|
|
|
|
Edizione |
[2nd ed.] |
|
|
|
|
|
Descrizione fisica |
|
1 online resource (XIII, 289 p.) |
|
|
|
|
|
|
Collana |
|
Lecture notes in mathematics ; ; 1670 |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Sobolev gradients |
Differential equations - Numerical solutions |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Bibliographic Level Mode of Issuance: Monograph |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references (p. [277]-286) and index. |
|
|
|
|
|
|
Nota di contenuto |
|
Several Gradients -- Comparison of Two Gradients -- Continuous Steepest Descent in Hilbert Space: Linear Case -- Continuous Steepest Descent in Hilbert Space: Nonlinear Case -- Orthogonal Projections, Adjoints and Laplacians -- Ordinary Differential Equations and Sobolev Gradients -- Convexity and Gradient Inequalities -- Boundary and Supplementary Conditions -- Continuous Newton#x2019;s Method -- More About Finite Differences -- Sobolev Gradients for Variational Problems -- An Introduction to Sobolev Gradients in Non-Inner Product Spaces -- Singularities and a Simple Ginzburg-Landau Functional -- The Superconductivity Equations of Ginzburg-Landau -- Tricomi Equation: A Case Study -- Minimal Surfaces -- Flow Problems and Non-Inner Product Sobolev Spaces -- An Alternate Approach to Time-dependent PDEs -- Foliations and Supplementary Conditions I -- Foliations and Supplementary Conditions II -- Some Related Iterative Methods for Differential Equations -- An Analytic Iteration Method -- Steepest Descent for Conservation Equations -- Code for an Ordinary Differential Equation -- Geometric Curve Modeling with Sobolev Gradients -- Numerical Differentiation, Sobolev Gradients -- Steepest Descent and Newton#x2019;s Method and Elliptic PDE -- Ginzburg-Landau Separation Problems -- Numerical Preconditioning Methods for Elliptic PDEs -- More Results on Sobolev Gradient Problems -- Notes |
|
|
|
|