1.

Record Nr.

UNINA9910483136803321

Titolo

Theory of Cryptography : 11th International Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014, Proceedings / / edited by Yehuda Lindell

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 2014

ISBN

3-642-54242-5

Edizione

[1st ed. 2014.]

Descrizione fisica

1 online resource (XVI, 739 p. 59 illus.)

Collana

Security and Cryptology, , 2946-1863 ; ; 8349

Disciplina

005.8

Soggetti

Cryptography

Data encryption (Computer science)

Data protection

Computer science

Algorithms

Computer science - Mathematics

Discrete mathematics

Cryptology

Data and Information Security

Theory of Computation

Discrete Mathematics in Computer Science

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Bibliographic Level Mode of Issuance: Monograph

Nota di contenuto

Virtual Black-Box Obfuscation for All Circuits via Generic Graded Encoding -- Obfuscation for Evasive Functions -- On Extractability Obfuscation -- Two-Round Secure MPC from Indistinguishability Obfuscation -- Chosen Ciphertext Security via Point Obfuscation -- Probabilistically Checkable Proofs of Proximity with Zero-Knowledge -- Achieving Constant Round Leakage-Resilient Zero-Knowledge -- Statistical Concurrent Non-malleable Zero Knowledge -- 4-Round Resettably-Sound Zero Knowledge -- Can Optimally-Fair Coin Tossing Be Based on One-Way Functions? -- On the Power of Public-Key Encryption in Secure Computation -- On the Impossibility of Basing Public-Coin One-Way Permutations on Trapdoor Permutations --



Towards Characterizing Complete Fairness in Secure Two-Party Computation -- On the Cryptographic Complexity of the Worst Functions -- Constant-Round Black-Box Construction of Composable Multi-Party Computation Protocol -- One-Sided Adaptively Secure Two-Party Computation -- Multi-linear Secret-Sharing -- Broadcast Amplification -- Non-malleable Coding against Bit-Wise and Split-State Tampering -- Continuous Non-malleable Codes -- Locally Updatable and Locally Decodable Codes -- Leakage Resilient Fully Homomorphic Encryption -- Securing Circuits and Protocols against 1/ poly(k) Tampering Rate -- How to Fake Auxiliary Input -- Standard versus Selective Opening Security: Separation and Equivalence Results -- Dual System Encryption via Predicate Encodings -- (Efficient) Universally Composable Oblivious Transfer Using a Minimal Number of Stateless Tokens -- Lower Bounds in the Hardware Token Model -- Unified, Minimal and Selectively Randomizable Structure-Preserving Signatures -- On the Impossibility of Structure-Preserving Deterministic Primitives.

Sommario/riassunto

This book constitutes the refereed proceedings of the 11th Theory of Cryptography Conference, TCC 2014, held in San Diego, CA, USA, in February 2014. The 30 revised full papers presented were carefully reviewed and selected from 90 submissions. The papers are organized in topical sections on obfuscation, applications of obfuscation, zero knowledge, black-box separations, secure computation, coding and cryptographic applications, leakage, encryption, hardware-aided secure protocols, and encryption and signatures.