1.

Record Nr.

UNINA9910480991103321

Autore

Tamme Günter

Titolo

Introduction to Étale Cohomology [[electronic resource] /] / by Günter Tamme

Pubbl/distr/stampa

Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1994

ISBN

3-642-78421-6

Edizione

[1st ed. 1994.]

Descrizione fisica

1 online resource (IX, 186 p.)

Collana

Universitext, , 0172-5939

Disciplina

514/.23

Soggetti

Algebraic geometry

Algebraic topology

K-theory

Number theory

Algebraic Geometry

Algebraic Topology

K-Theory

Number Theory

Lingua di pubblicazione

Inglese

Formato

Materiale a stampa

Livello bibliografico

Monografia

Note generali

Translated from German.

Nota di bibliografia

Includes bibliographical references (pages [179]-181) and index.

Nota di contenuto

0. Preliminaries -- §1. Abelian Categories -- §2. Homological Algebra in Abelian Categories -- §3. Inductive Limits -- I. Topologies and Sheaves -- §1. Topologies -- §2. Abelian Presheaves on Topologies -- §3. Abelian,Sheaves on Topologies -- II. Étale Cohomology -- §1. The Étale Site of a Scheme -- §2. The Case X= spec(k) -- §3. Examples of Étale Sheaves -- §4. The Theories of Artin-Schreier and of Kummer -- §5. Stalks of Étale Sheaves -- §6. Strict Localizations -- §7. The Artin Spectral Sequence -- §8. The Decomposition Theorem. Relative Cohomology -- §9. Torsion Sheaves, Locally Constant Sheaves, Constructible Sheaves -- §10. Étale Cohomology of Curves -- §11. General Theorems in Étale Cohomology Theory.

Sommario/riassunto

Étale Cohomology is one of the most important methods in modern Algebraic Geometry and Number Theory. It has, in the last decades, brought fundamental new insights in arithmetic and algebraic geometric problems with many applications and many important



results. The book gives a short and easy introduction into the world of Abelian Categories, Derived Functors, Grothendieck Topologies, Sheaves, General Étale Cohomology, and Étale Cohomology of Curves.