|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910480819503321 |
|
|
Titolo |
Stochastic optimization models in finance / / edited by W. T. Ziemba, R. G. Vickson |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
New York, New York ; ; London, [England] : , : Academic Press, , 1975 |
|
©1975 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (736 p.) |
|
|
|
|
|
|
Collana |
|
Economic Theory and Mathematical Economics |
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
|
|
Soggetti |
|
Finance |
Mathematical optimization |
Stochastic processes |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
Description based upon print version of record. |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references and index at the end of each chapters. |
|
|
|
|
|
|
|
|
Nota di contenuto |
|
Front Cover; Stochastic Optimization Models in Finance; Copyright Page; Dedication; Table of Contents; PREFACE; ACKNOWLEDGMENTS; Part I: Mathematical Tools; INTRODUCTION; I. Expected Utility Theory; II. Convexity and the Kuhn-Tucker Conditions; III. Dynamic Programming; SECTION1: EXPECTED UTILITY THEORY; CHAPTER 1. A GENERAL THEORY OF SUBJECTIVE PROBABILITIESAND EXPECTED UTILITIES; 1.Introduction; 2. Definitions andnotation; 3. Axioms and summarytheorem; 4.Theorems; 5. Proof of Theorem3; 6. Proof of Theorem4; SECTION2: CONVEXITY AND THE KUHN-TUCKERCONDITIONS; CHAPTER2. PSEUDO-CONVEX FUNCTIONS |
Abstract1.Introduction; 2. Properties of pseudo-convex functions andapplications; 3. Remarks on pseudo-convexfunctions; 4.Acknowledgement; CHAPTER3. CONVEXITY, PSEUDO-CONVEXITY AND QUASI-CONVEXITY OF COMPOSITE FUNCTIONS; ABSTRACT; Preliminaries; Principal result; Applications; SECTION3: DYNAMIC PROGRAMMING; Chapter4. Introduction to Dynamic Programming; I. Introduction; II. Sequential Decision Processes; III. Terminating Process; |
|
|
|
|