| |
|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910480740403321 |
|
|
Autore |
Jantzen Chris <1962-> |
|
|
Titolo |
Degenerate principal series for symplectic and odd-orthogonal groups / / Chris Jantzen |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 1996 |
|
©1996 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (114 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; Number 590 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
p-adic fields |
Symplectic groups |
Representations of groups |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"November 1996, volume 124, number 590 (first of 5 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""1. Introduction""; ""2. Notation and preliminaries""; ""3. Components: useful special cases""; ""4. Reducibility points""; ""5. Components: the ""ramified"" case""; ""6. Components: the ""unramified"" case""; ""7. Composition series""; ""References"" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2. |
Record Nr. |
UNINA9910346905303321 |
|
|
Autore |
Gentner Daniel Sebastian |
|
|
Titolo |
Palm theory, mass transports and ergodic theory for group-stationary processes |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
KIT Scientific Publishing, 2011 |
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (IV , 145 p. p.) |
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Sommario/riassunto |
|
This work is about random measures stationary with respect to a possibly non-transitive group action. It contains chapters on Palm Theory, the Mass-Transport Principle and Ergodic Theory for such random measures. The thesis ends with discussions of several new models in Stochastic Geometry (Cox Delauney mosaics, isometry stationary random partitions on Riemannian manifolds). These make crucial use of the previously developed techniques and objects. |
|
|
|
|
|
|
|
| |