|
|
|
|
|
|
|
|
1. |
Record Nr. |
UNINA9910480401403321 |
|
|
Autore |
Guralnick Robert M. <1950-> |
|
|
Titolo |
Symmetric and alternating groups as monodromy groups of Riemann surfaces I : generic covers and covers with many branch points / / Robert M. Guralnick, John Shareshian ; with an appendix by R. Guralnick and J. Stafford |
|
|
|
|
|
|
|
Pubbl/distr/stampa |
|
|
Providence, Rhode Island : , : American Mathematical Society, , 2007 |
|
©2007 |
|
|
|
|
|
|
|
|
|
ISBN |
|
|
|
|
|
|
Descrizione fisica |
|
1 online resource (142 p.) |
|
|
|
|
|
|
Collana |
|
Memoirs of the American Mathematical Society, , 0065-9266 ; ; Volume 189, Number 886 |
|
|
|
|
|
|
|
|
Disciplina |
|
|
|
|
|
|
Soggetti |
|
Permutation groups |
Curves |
Monodromy groups |
Riemann surfaces |
Symmetry groups |
Electronic books. |
|
|
|
|
|
|
|
|
Lingua di pubblicazione |
|
|
|
|
|
|
Formato |
Materiale a stampa |
|
|
|
|
|
Livello bibliografico |
Monografia |
|
|
|
|
|
Note generali |
|
"Volume 189, Number 886 (third of 4 numbers)." |
|
|
|
|
|
|
Nota di bibliografia |
|
Includes bibliographical references. |
|
|
|
|
|
|
Nota di contenuto |
|
""Contents""; ""Chapter 1. Introduction and statement of main results""; ""1.1. Five or more branch points""; ""1.2. An n-cycle""; ""1.3. Asymptotic behavior of the genus for actions on k-sets""; ""1.4. Galois groups of trinomials""; ""Chapter 2. Notation and basic lemmas""; ""Chapter 3. Examples""; ""Chapter 4. Proving the main results on five or more branch points - Theorems 1.1.1 and 1.1.2""; ""Chapter 5. Actions on 2-sets - the proof of Theorem 4.0.30""; ""Chapter 6. Actions on 3-sets - the proof of Theorem 4.0.31""; ""Chapter 7. Nine or more branch points - the proof of Theorem 4.0.34"" |
""Chapter 8. Actions on cosets of some 2-homogeneous and 3-homogeneous groups""""Chapter 9. Actions on 3-sets compared to actions on larger sets""; ""Chapter 10. A transposition and an n-cycle""; ""Chapter 11. Asymptotic behavior of g[sub(k)] (E)""; ""Chapter 12. An n-cycle - the proof of Theorem 1.2.1""; ""Chapter 13. Galois groups of |
|
|
|
|